Anizon, Fabrice team published research on Tetrahedron Letters in 2020 | 2576-47-8

Reference of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Organic compounds having carbon bonded to bromine are called organic bromides. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Reference of 2576-47-8.

Anizon, Fabrice;Giraud, Francis;Ivanova, Ekaterina S.;Kaluzhny, Dmitry N.;Shtil, Alexander A.;Cisnetti, Federico;Moreau, Pascale research published 《 Synthesis and biological activities of new pyrrolocarbazole-imidazobenzimidazole conjugates》, the research content is summarized as follows. New pyrrolocarbazole-imidazobenzimidazole conjugates I (R = H, CF3) were prepared and evaluated for their inhibitory potencies toward Pim-1 kinase, DNA binding and antiproliferative activities against human tumor cell lines. The results demonstrated that conjugation of pyrrolocarbazole II Pim inhibitors with imidazobenzimidazole derivatives III could enhance the antiproliferative potency of conjugates I compared to the derived compds II and III.

Reference of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Andrews, Mary Katherine team published research on Journal of the American Chemical Society in 2022 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene, COA of Formula: C8H9BrO2

Andrews, Mary Katherine;Liu, Xinyu;Gellman, Samuel H. research published 《 Tailoring Reaction Selectivity by Modulating a Catalytic Diad on a Foldamer Scaffold》, the research content is summarized as follows. Use of a tunable mol. scaffold to align a reactive diad for bifunctional catalysis can reveal relationships between functional group identity and reactivity that might otherwise be impossible to identify. Here we use an α/β-peptide helix to show that an aligned pair of primary amine groups is uniquely competent to catalyze crossed aldol condensations with an aryl aldehyde as the electrophile. Geometrically similar diads in which one amine group is secondary, or both are secondary, are good catalysts for other types of aldol condensations but not those involving an aryl aldehyde. Catalytic efficacy requires β-amino acid residues that are preorganized for helix formation via cyclic constraint. Conventional peptides (exclusively α-amino acid residues) that display the primary amine diad are poor catalysts, which highlights the critical role of the foldamer scaffold.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Andleeb, Hina team published research on Journal of Molecular Structure in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Reference of 585-76-2

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 585-76-2.

Andleeb, Hina;Danish, Lubna;Munawar, Shiza;Ahmed, Muhammad Naeem;Khan, Imtiaz;Ali, Hafiz Saqib;Tahir, Muhammad Nawaz;Simpson, Jim;Hameed, Shahid research published 《 Theoretical and computational insight into the supramolecular assemblies of Schiff bases involving hydrogen bonding and C-H…π interactions: Synthesis, X-ray characterization, Hirshfeld surface analysis, anticancer activity and molecular docking analysis》, the research content is summarized as follows. The present study examines the significance of various non-covalent interactions in the supramol. assembly of (E)-1-(1-(4-nitrophenyl)ethylidene)-2-phenylhydrazine 1c and (E)-3-bromo-N’-(1-phenylethylidene)benzohydrazide 2d. The synthesized compounds were fully characterized by spectroscopic methods and single crystal X-ray diffraction anal. The topol. of the supramol. assemblies was controlled by various non-covalent interactions including classical hydrogen bonding, C-H…π and Br… Br interactions which were examined in detail using several theor. methods and DFT calculations The optimized geometric parameters of compounds 1c and 2d were calculated using d. functional theory (DFT/B3LYP) quantum chem. method with the 6-311++G(d,p) basis set using the crystallog. coordinates. Addnl., fragments contributing to the HOMO and LUMO MOs were investigated at the same level of theory. The nature and various types of intermol. interactions in the crystal structures was also investigated by Hirshfeld surface anal. The synthesized Schiff bases were also studied for their potential as drugs and physicochem. properties. Bioevaluation against four cancer cell lines (NCI-H460, NCI-H460/Bcl-2, MDA-MB-231 and MCF-7) showed that compound 1c was a more potent inducer of toxicity compared to 2d. The putative binding modes of the bioactive Schiff bases were investigated using mol. docking tools and the results revealed that both the inhibitors were stabilized in the active pocket of the enzyme via the formation of various interactions with the key amino acid residues.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Reference of 585-76-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

An, Xiaoying team published research on Hebei Shifan Daxue Xuebao, Ziran Kexueban in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Application of C6H7BrN2

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Application of C6H7BrN2.

An, Xiaoying;Bai, Fan;Li, Wenhong;Wang, Lanzhi research published 《 Synthesis of 2,3-diester-2,4-diphenyl-1,5-benzodiazepine compounds via one-pot three-component tandem reactions》, the research content is summarized as follows. In this paper, seven novel 2,3-diester-2,4-diphenyl-1,5-benzodiazepines with imine structure were obtained via one-pot three-component tandem reactions catalyzed by TsOH in ethanol. With substituted 1,2-phenylenediamines, Et benzoylacetate and Et benzoylformate as the raw materials, the tandem reactions undergo two nucleophilic addition-dehydration processes to form the active intermediate mols. containing imine and enamine structures, further undergo carbon-carbon coupling cyclization and hydrogen transfer to yield the target products. A reasonable reaction mechanism is proposed for this three-component tandem reaction. The synthesis has the advantages of environmental friendliness, mild reaction conditions, wide substrate range, etc., which provides a green, efficient and convenient synthetic route for nitrogen-containing heterocyclic compounds

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Application of C6H7BrN2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

An, Xiaoying team published research on Chemistry of Heterocyclic Compounds (New York, NY, United States) in 2021 | 1575-37-7

Name: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Name: 4-Bromobenzene-1,2-diamine.

An, Xiaoying;Gao, Lei;Wang, Mingliang;Wu, Haitao;Wang, Lanzhi research published 《 One-pot synthesis of 1,5-benzodiazepine-2,3-dicarboxylates via three-component domino reactions in the presence of γ-Fe2O3@SiO2/Ce(OTf)3》, the research content is summarized as follows. Novel, efficient and environmentally friendly approaches was developed for the synthesis of 1,5-benzodiazepine-2,3-dicarboxylates I [R1 = H, Me, Cl, Br; R2 = Me, Et, Ph; R3 = Me, Et, Pr] and II by one-pot three-component domino reactions in the presence of a catalytic amount of γ-Fe2O3@SiO2/Ce(OTf)3 in EtOH at ambient temperature A total of synthesized 2,5-dihydro-1H-1,5-benzodiazepine-2,3-dicarboxylates I and 2-methyl-2,3-dihydro-1H-1,5-benzodiazepine-2,3-dicarboxylates II with enamine or imine structure of the heterocycle, resp., were obtained in good yields by reacting substituted 1,2-phenylenediamine, β-carbonyl esters and Et glyoxylate or Et pyruvate. One-pot reactions were successfully realized to form one new cycle and four new bonds (one C-C, two C-N, one C=C or two C-C, one C-N, one C=N). The salient features of this reaction included short reaction time, mild reaction conditions, moderate to excellent yields, recyclability of the catalyst, and wide substrate scope.

Name: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

An, Guoqiang team published research on Organic Letters in 2021 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Electric Literature of 244205-40-1

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Electric Literature of 244205-40-1.

An, Guoqiang;Wang, Limin;Han, Jianwei research published 《 Palladium Catalyzed Regioselective Cyclization of Arylcarboxylic Acids via Radical Intermediates with Diaryliodonium Salts》, the research content is summarized as follows. Palladium-catalyzed C2-arylation/intramol. acylation with arylcarboxylic acids was developed by using diaryliodonium salts. The protocol has the advantage of good step-economy by two chem. bonds formation in one pot.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Electric Literature of 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Amiri Rudbari, Hadi team published research on Bioorganic Chemistry in 2022 | 90-59-5

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Safety of 3,5-Dibromo-2-hydroxybenzaldehyde.

Amiri Rudbari, Hadi;Saadati, Arezoo;Aryaeifar, Mahnaz;Blacque, Olivier;Cuevas-Vicario, Jose V.;Cabral, Rui;Raposo, Luis R.;Fernandes, Alexandra R. research published 《 Platinum(II) and Copper(II) complexes of asymmetric halogen-substituted [NN′O] ligands: Synthesis, characterization, structural investigations and antiproliferative activity》, the research content is summarized as follows. In order to better understand the effect of structure, halogen substitution, metal ions and ligand flexibility on antiproliferative activity, eight Cu(II) complexes and eight Pt(II) complexes were obtained of 2,4-X1,X2-6-((pyridine-2-ylmethylamino)methyl)phenol and 2,4-X1,X2-6-((pyridine-2-ylmethylamino)ethyl)phenol (where X is Cl, Br, or I) ligands. The compounds were characterized with various techniques, such as FT-IR, NMR, elemental anal. and single-crystal X-ray diffraction (SCXRD). The X-ray structures showed that ligand acts as a bidentate and tridentate donor in Cu(II) and Pt(II) complexes, resp. This difference in structures is due to the use or non-use of base in the preparation of complexes. Also, complexation of Cl2-H2L1 with CuCl2·2H2O gives two different types of structures: polymer (Cl2-H2L1-Cupolymer) and dimer (Cl2-H2L1-Cudimer), according to the crystal color. In addition, 1H NMR spectrum for platinum complexes display two set of signals that can be attributed to the presence of two isomers in solution All complexes induced moderate to high reduction in A2780 and HCT116 cancer cell viability. However, only complexes bearing iodo- substituted in ligands exhibited significantly low cytotoxicity in normal fibroblasts when compared with cancer cell lines. The antiproliferative effect exhibited by I2-H2L2-Cu complex in A2780 cell line was due to induction of cell death mechanisms, namely by apoptosis and autophagy. I2-H2L2-Cu complex does not cause DNA cleavage but a slight delay in cell cycle was observed for the first 24 h of exposition. High cytotoxicity was related with the induction of intracellular ROS. This increase in intracellular ROS was not accompanied by destabilization of the mitochondrial membrane which is an indication that ROS are being triggered externally by I2-H2L2-Cu complex and in agreement with an extrinsic apoptosis activation. I2-H2L2-Cu complex has a pro-angiogenic effect, increasing the vascularization of the CAM in chicken embryos. This is also a very important characteristic in cancer treatment since the increased vascularization in tumors might facilitate the delivery of therapeutic drugs. Taken together, these results support the potential therapeutic of the I2-H2L2-Cu complex.

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Amaike, Kazuma team published research on Chem in 2020 | 5392-10-9

SDS of cas: 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. SDS of cas: 5392-10-9.

Amaike, Kazuma;Oshima, Tsuyoshi;Skoulding, Nicola Stephanie;Toyama, Yoshifumi;Hirota, Tsuyoshi;Itami, Kenichiro research published 《 Small Molecules Modulating Mammalian Biological Clocks: Exciting New Opportunities for Synthetic Chemistry》, the research content is summarized as follows. The circadian clock is an intrinsic time-keeping system that controls daily rhythms in almost all living organisms on the earth. Daily rhythms are observed in various life phenomena, such as sleep-wake cycles, body temperature, blood pressure, and hormone secretion in animals, and stomatal movements and photosynthetic activity in plants. Therefore, controlling the circadian clock in a precise manner will make significant contributions in the elucidation of their mol. mechanisms, as well as to medicine and agriculture. Genetic and mol. biol. studies have made substantial progress in understanding of mol. clock mechanisms. For further investigation of the basic mechanisms as well as for therapeutic applications, small-mol. compounds will provide unique opportunities. In this perspective, we highlight chem. biol. approaches toward mammalian circadian clock modulation by using small synthetic mols.

SDS of cas: 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Alzain, Abdulrahim A. team published research on European Journal of Medicinal Chemistry in 2021 | 70-23-5

Product Details of C5H7BrO3, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 70-23-5, formula is C5H7BrO3, Name is Ethyl 3-bromo-2-oxopropanoate. Organic compounds having carbon bonded to bromine are called organic bromides. Product Details of C5H7BrO3.

Alzain, Abdulrahim A.;Brisson, Lucie;Delaye, Pierre-Olivier;Penichon, Melanie;Chadet, Stephanie;Besson, Pierre;Chevalier, Stephan;Allouchi, Hassan;Mohamed, Magdi A.;Roger, Sebastien;Enguehard-Gueiffier, Cecile research published 《 Bioinspired imidazo[1,2-a:4,5-c’]dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation》, the research content is summarized as follows. Design, synthesis and evaluation of novel bioinspired imidazo[1,2-a:4,5c’]dipyridines I [X = Br or I; R1 = Me, Et, Ph, etc.; R2 = c-Pr, t-Bu, Ph, etc.; R3 = H, Me, Br, etc.; R4 = H, Et, Bn]. The structural optimization identified four anti-proliferative compounds Compounds I [X = Br or I; R1 = Me, MeO, R2 = Ph, t-Bu, c-Pr, R3 = H, R4 = Bn] exhibited excellent anticancer activities in vitro with IC50 of 0.4-5μM against three human cancer cell lines (MDA-MB-468, MDA-MB-435s and MDA-MB-231). These I [X = Br or I; R1 = Me, MeO, R2 = Ph, t-Bu, c-Pr, R3 = H, R4 = Bn] induced apoptosis in MDA-MB-231 cells in a dose-dependent manner, targeting different apoptotic proteins expression: I [R1 = Me, R2 = Ph, R3 = H, R4 = Bn] increased the expression of pro-apoptotic Bax protein while 18-20 reduced the level of anti-apoptotic Bcl-2 protein. Compounds I [X = Br; R1 = MeO, R2 = t-Bu, c-Pr, R3 = H, R4 = Bn] also reduced MDA-MB-231 cells proliferation as measured by Ki-67 staining. Furthermore, compounds were also tested for the ability to inhibit cell migration in the highly aggressive human MDA-MB-435s cell line. Six compounds of this series I [X = Br; R1 = Me, Ph, MeO, HO, Et, R2 = t-Bu, Ph, c-Pr, R3 = H, Br, R4 = Bn] inhibited cell migration by 41-50% while four compounds I [X = Br; R1 = MeO, Ph, R2 = Ph, t-Bu, R3 = H, Br, Ph, 1-benzyl pyridinium-4-yl, R4 = Bn, H] inhibited the migration by 53-62% in wound-healing experiments Interestingly, compound I [X = Br, R1 = OMe, R2 = Ph, R3 = H, R4 = Bn]. presented both antiproliferative and anti-migration activities and were promising anti-metastatic agent for cancer treatment.

Product Details of C5H7BrO3, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Alves Avelar, Leandro A. team published research on European Journal of Medicinal Chemistry in 2021 | 4224-70-8

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 4224-70-8.

Alves Avelar, Leandro A.;Schrenk, Christian;Soennichsen, Melf;Hamacher, Alexandra;Hansen, Finn K.;Schliehe-Diecks, Julian;Borkhardt, Arndt;Bhatia, Sanil;Kassack, Matthias U.;Kurz, Thomas research published 《 Synergistic induction of apoptosis in resistant head and neck carcinoma and leukemia by alkoxyamide-based histone deacetylase inhibitors》, the research content is summarized as follows. Targeting epigenetic dysregulation has emerged as a valuable therapeutic strategy in cancer treatment. Especially epigenetic combination therapy of histone deacetylase inhibitors (HDACi) with established anti-cancer drugs has provided promising results in preclin. and clin. studies. The structural optimization of alkoxyamide-based class I/IIb inhibitors afforded improved analogs with potent efficacy in cisplatin-resistant head and neck carcinoma cells and bortezomib-resistant leukemia cells. The most promising HDACi showed a superior synergistic cytotoxic activity as compared to vorinostat and class I HDACi in combination with cisplatin, leading to a full reversal of the chemoresistant phenotype in head and neck cancer cell lines, as well in combination with the proteasome inhibitors (bortezomib and carfilzomib) in a panel of leukemic cell lines. Furthermore, the most valuable alkoxyamide-based HDACi exhibited strong ex vivo anticancer efficacy against primary patient samples obtained from different therapy-resistant leukemic entities.

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary