Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 4897-84-1, formula is C5H9BrO2, The most pervasive is the naturally produced bromomethane. Application In Synthesis of 4897-84-1
Hunt, Andrew P.;Batka, Allison E.;Hosseinzadeh, Marjan;Gregory, Jordan D.;Haque, Halima K.;Ren, Hang;Meyerhoff, Mark E.;Lehnert, Nicolai research published ã?Nitric Oxide Generation on Demand for Biomedical Applications via Electrocatalytic Nitrite Reduction by Copper BMPA- and BEPA-Carboxylate Complexesã? the research content is summarized as follows. Intravascular (IV) catheters are essential devices in the hospital that are used to monitor a patient’s blood and for administering drugs or nutrients. However, IV catheters are also prone to blood clotting at the point of insertion and infection by formation of robust bacterial biofilms on their surface. Nitric oxide (NO) is ideally suited to counteract both of these problems, due to its antimicrobial properties and its ability to inhibit platelet activation/aggregation. One way to equip catheters with NO releasing properties is by electrocatalytic nitrite reduction to NO by copper complexes in a multi-lumen configuration. In this work, we systematically investigate six closely related Cu(II) BMPA- and BEPA-carboxylate complexes (BMPA = bis-(2-methylpyridyl)amine; BEPA = bis-(2-ethylpyridyl)amine), using carboxylate groups of different chain lengths. The corresponding Cu(II) complexes were characterized using UV-Vis, EPR spectroscopy, and X-ray crystallog. Using detailed cyclic voltammetry (CV) and bulk electrocatalyic studies (with real-time NO quantification), in aqueous buffer, pH 7.4, we are able to derive clear reactivity relations between the ligand structures of the complexes, their Faradaic efficiencies for NO generation, their turnover frequencies (TOFs), and their redox potentials. Our results show that the complex [Cu(BEPA-Bu)](OAc) is the best catalyst with a high Faradaic efficiency over large nitrite concentration ranges and the expected best tolerance to oxygen levels. For this species, the more pos. redox potential suppresses NO disproportionation, which is a major Achilles heel of the (faster) catalysts with the more neg. reduction potentials.
Application In Synthesis of 4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary