Ma, Xiaojun team published research in European Journal of Medicinal Chemistry in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Quality Control of 402-49-3

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Quality Control of 402-49-3.

Ma, Xiaojun;Sun, Nannan;Li, Xinwei;Fu, Wei research published 《 Discovery of novel N-sulfonamide-tetrahydroisoquinolines as potent retinoic acid receptor-related orphan receptor γt agonists》, the research content is summarized as follows. Cancer immunotherapy has become a research hotspot in recent years. A variety of targets were developed for small mol. immuno-oncol. agents, including retinoic acid-related orphan receptor gamma t (RORγt), chemokine receptor, stimulator of interferon genes (Sting), indoleamine 2,3-dioxygenase (IDO), toll-like receptors (TLR), etc. Among them, the retinoic acid receptor-related orphan receptor γt (RORγt) has gradually attracted more attention in these years. In particular, LYC-55716 (cintirorgon), a small mol. RORγt agonist developed by Lycera, has entered the phase II clin. study. In this work, starting from compound 7, compound 28 was obtained after 4 rounds of compound design, synthesis and SAR studies, which had an EC50 of 0.021 ± 0.002 μM in dual Fluorescence Resonance Energy Transfer (dual-FRET) assay and an EC50 of 0.021 ± 0.002 μM in mouse Th17 cell differentiation assay. It indicated that compound 28 had excellent RORγt agonistic activity and was expected to be developed as a new type of small mol. drug for cancer immunotherapy. The mol. dynamic simulation revealed that the agonist 28 formed a strong HYF triplet intramol. interaction to stabilize H12, which helped RORγt to form the protein-binding site and therefore made the receptor ready to recruit coactivator. When the inverse agonist s27 bound with RORγt, the steric hindrance between s27 and H479 caused the destruction of the HYF triplet, leading to the collapse of H12, thus the transcription function of RORγt was interrupted due to the failure of recruiting a coactivator mol. The triplet HYF in RORγt and the rigidity of 28 and s27 were identified to be the structural determinants for the functional switch of RORγt.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Quality Control of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary