Matiwane, Anelisa team published research in Polyhedron in 2020 | 2576-47-8

Synthetic Route of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide, Synthetic Route of 2576-47-8

Matiwane, Anelisa;Obuah, Collins;Darkwa, James research published 《 (Pyrazolylethyl-amine)zinc(II) carboxylate complexes as catalysts for the copolymerization of CO2 and cyclohexene oxide》, the research content is summarized as follows. Pyrazolyl compounds 2-(3,5-di-tert-butyl-1H-pyrazol-1-yl)ethyl-amine (L1), 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyl-amine (L2), and 2-(3-phenyl-5-(trifluoromethyl)-1H-pyrazol-1-yl)ethyl-amine (L3) were reacted with a mixture of zinc(II) acetate and 3,5-dinitrobenzoic acid to form the bidentate complexes [(2-(3,5-di-tert-butyl-1H-pyrazol-1-yl)-ethyl-amine)-Zn(C6H5COO)(NO2)2] (1), [(2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyl-amine)Zn(C6H5COO)(NO2)2] (2), and [(2-(5-phenyl-3-(trifluoro-methyl)-1H-pyrazol-1-yl)ethyl-amine)Zn(C6H5COO)(NO2)2] (3) resp. All three zinc complexes were tested as catalysts for the copolymerization of CO2 and cyclohexene oxide (CHO) and found active to form poly(cyclohexene carbonate) (PCHC) and cyclohexene carbonate (CCHC) at CO2 pressures as low as 1.5 MPa and under solvent-free conditions in the absence of a co-catalyst. Increase in CO2 pressure resulted in activity and showed selectivity up to 99% selectivity for the formation of the copolymer PCHC. Optimum temperature for the polymerization was 100°C and even at this temperature selectivity towards formation of PCHC was found to be 99%. The copolymers obtained have moderate mol. weights (3860-11,500 g/mol) and polydispersity indexes varying from 2.73 to 4.93.

Synthetic Route of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary