Gayler, Kevin M. team published research in European Journal of Medicinal Chemistry in 2021 | 4224-70-8

4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., Recommanded Product: 6-Bromohexanoic acid

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid. Organic compounds having carbon bonded to bromine are called organic bromides. Recommanded Product: 6-Bromohexanoic acid.

Gayler, Kevin M.;Quintana, Jeremy M.;Mattke, Jordan;Plunk, Michael A.;Kostyo, Jessica H.;Karunananthan, Johann W.;Nguyen, Harold;Shuda, Mina;Ferreira, Liam D.;Baker, Hannah;Stinchcomb, Alexandra L.;Sharina, Iraida;Kane, Robert R.;Martin, Emil research published 《 Gemfibrozil derivatives as activators of soluble guanylyl cyclase – A structure-activity study》, the research content is summarized as follows. Previous studies demonstrated that anti-hyperlipidemic drug gemfibrozil acts as NO- and heme-independent activator of NO receptor soluble guanylyl cyclase. A series of new gemfibrozil derivatives were synthesized and evaluated for sGC activation. The structure-activity relationship study identified the positions in gemfibrozils scaffold that are detrimental for sGC activation and those that are amendable for optimizing modifications. Compared with gemfibrozil, compounds 7c and 15b were more potent activators of cGMP-forming activity of purified sGC and exhibited enhanced relaxation of preconstricted mouse thoracic aorta rings. These studies established the overall framework needed for futher improvement of sGC activators based on gemfibrozil scaffold.

4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., Recommanded Product: 6-Bromohexanoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gawandi, Sinthiya J. team published research in Bioorganic Chemistry in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Electric Literature of 1575-37-7

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Electric Literature of 1575-37-7.

Gawandi, Sinthiya J.;Desai, Vidya G.;Joshi, Shrinivas;Shingade, Sunil;Pissurlenkar, Raghuvir R. research published 《 Assessment of elementary derivatives of 1,5-benzodiazepine as anticancer agents with synergy potential》, the research content is summarized as follows. Herein, we designed and synthesized 1,5-benzodiazepines as a lead mol. for anticancer activity and as potent synergistic activity with drug Methotrexate. Working under the framework of green chem. principles, series of 1,5-benzodiazepine derivatives (3a-3a1) were synthesized using biocatalyst i.e. thiamine hydrochloride under solvent free neat heat conditions. These compounds were screened for in vitro anti cancer activity against couple of cancer cell lines (HeLa and HEPG2) and normal human cell line HEK-293 via MTT assay. Compound 3x was found to be influential against both the cell lines with IC50 values of 0.067 ± 0.002 μM against HeLa and 0.087 ± 0.003 μM against HEPG2 cell line, having activity as compatible to the standard drug Methotrexate. Bioinformatic anal. showed that these compounds are good tyrosine kinase inhibitors which was then proved using enzyme inhibition assay. The studies of apoptosis revealed late apoptotic mode of cell death for the compounds against HEPG2 cancer cell line using flow cytometry method. Synergistic studies of compound 3x and drug Methotrexate showed that the combination was highly active against cancer HeLa and HEPG2 cell line with IC50 value 0.046 ± 0.002 μM and 0.057 ± 0.002 μM resp., which was well supported by apoptosis pathway. Further the compounds proved its scope as DNA intercalating agents, as its mol. docking and DNA binding studies revealed that the compounds would fit well into the DNA strands.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Electric Literature of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gavara, Laurent team published research in Bioorganic Chemistry in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Formula: C7H5BrO2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Formula: C7H5BrO2.

Gavara, Laurent;Legru, Alice;Verdirosa, Federica;Sevaille, Laurent;Nauton, Lionel;Corsica, Giuseppina;Mercuri, Paola Sandra;Sannio, Filomena;Feller, Georges;Coulon, Remi;De Luca, Filomena;Cerboni, Giulia;Tanfoni, Silvia;Chelini, Giulia;Galleni, Moreno;Docquier, Jean-Denis;Hernandez, Jean-Francois research published 《 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors》, the research content is summarized as follows. In Gram-neg. bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clin. useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiol. assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a Pr chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained Ph, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiol. study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clin. isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogs in the active site of VIM-2.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Formula: C7H5BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Garcia de Jalon, Elvira team published research in Dyes and Pigments in 2021 | 4224-70-8

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid, Reference of 4224-70-8

Garcia de Jalon, Elvira;Ruiz de Garibay, Gorka;Haug, Bengt Erik;McCormack, Emmet research published 《 CytoCy5S, a compound of many structures. in vitro and in vivo evaluation of four near-infrared fluorescent substrates of nitroreductase (NTR)》, the research content is summarized as follows. CytoCy5S, a quenched, red-shifted fluorescent probe, has been used to exploit the imaging potential of the nitroreductase (NTR) reporter gene platform. Its use has been reported in a number of publications, however there are discrepancies in both the reported structure and its physicochem. properties. Herein, we aim to highlight these discrepancies and to define the best candidate of the four substrates under study for preclin. work in NTR reporting by optical applications. We report the synthesis, purification and characterization of four NTR substrates, including alternately described structures currently referred by the name CytoCy5S. A comparative NTR enzymic assay was performed to assess the spectroscopic characteristics of the different reductively activated probes. The NTR expressing triple-neg. breast carcinoma cell line, MDA-MB-231 NTR+, was employed to compare, both in vitro and in vivo, the suitability of these fluorescent probes as reporters of NTR activity. Comparison of the reporting properties was achieved by flow cytometry, fluorescence microscopy and optical imaging, both in vivo and ex vivo. This study evaluated the different spectroscopic and biol. characteristics of the four substrates and concluded that substrate 1 presents the best features for oncol. in vivo preclin. optical imaging.

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gao, Yu-Qi team published research in Organic & Biomolecular Chemistry in 2021 | 70-23-5

70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., Application of C5H7BrO3

Organic compounds having carbon bonded to bromine are called organic bromides. 70-23-5, formula is C5H7BrO3, Name is Ethyl 3-bromo-2-oxopropanoate. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Application of C5H7BrO3.

Gao, Yu-Qi;Hou, Yi;Chen, Junhan;Zhen, Yanxia;Xu, Dongyang;Zhang, Hongli;Wei, Hongbo;Xie, Weiqing research published 《 Asymmetric synthesis of 9-alkyl tetrahydroxanthenones via tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid》, the research content is summarized as follows. A tandem asym. Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical mols., in high yields with good to high enantioselectivities.

70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., Application of C5H7BrO3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gao, Yadong team published research in Chem in 2020 | 4897-84-1

Computed Properties of 4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.

Organic compounds having carbon bonded to bromine are called organic bromides. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Computed Properties of 4897-84-1.

Gao, Yadong;Yang, Chao;Bai, Songlin;Liu, Xiaolei;Wu, Qingcui;Wang, Jing;Jiang, Chao;Qi, Xiangbing research published 《 Visible-Light-Induced Nickel-Catalyzed Cross-Coupling with Alkylzirconocenes from Unactivated Alkenes》, the research content is summarized as follows. Visible-light-induced single nickel-catalyzed C(sp3)-C(sp3), C(sp3)-C(sp2) and C(sp3)-C(sp) cross-coupling reactions were reported using alkylzirconocenes, which were easily generated in-situ from terminal or internal unactivated alkenes through hydrozirconation and chain walking. This method was mild and applicable for a large range of substrates including primary, secondary, tertiary alkyl, aryl, alkenyl, alkynyl halides and a variety of alkenes. Mechanistic studies suggested a novel nickel-catalyzed radical cross-coupling pathway, which represented the first visible-light-induced transformation of alkylzirconocenes.

Computed Properties of 4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gao, Xiu-zheng team published research in Bioorganic Chemistry in 2021 | 823-78-9

Category: bromides-buliding-blocks, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Category: bromides-buliding-blocks.

Gao, Xiu-zheng;Lv, Xu-tao;Zhang, Rui-rui;Luo, Yang;Wang, Mu-xuan;Chen, Jia-shu;Zhang, Yu-kai;Sun, Bin;Sun, Jin-yue;Liu, Yu-fa;Liu, Chao research published 《 Design, synthesis and in vitro anticancer research of novel tetrandrine and fangchinoline derivatives》, the research content is summarized as follows. Cancer treatment is one of the major public health issues in the world. Tetrandrine (Tet) and fangchinoline (d-Tet) are two bis-benzyl isoquinoline alkaloids extracted from Stephania tetrandra S. Moore, and their antitumor activities have been confirmed. However, the ED of Tet and d-Tet were much higher than that of the pos. control and failed to meet clin. standards Therefore, in this study, as a continuation of our previous work to study and develop high-efficiency and low-toxic antitumor lead compounds, twenty new Tet and d-Tet derivatives were designed, synthesized and evaluated as antitumor agents against six cancer cell lines (H460, H520, HeLa, HepG-2, MCF-7, SW480 cell lines) and BEAS-2B normal cells by CCK-8 anal. Ten derivatives showed better cytotoxic effects than the parent fangchinoline, of which I showed the strongest cell growth inhibitory activity with an IC50 value of 0.59μM against A549 cells. Subsequently, the antitumor mechanism of I was studied by flow cytometry, Hoechst 33258, JC-1 staining, cell scratch, transwell migration, and Western blotting assays. These results showed that compound I could inhibit A549 cell proliferation by arresting the G2/M cell cycle and inhibiting cell migration and invasion by reducing MMP-2 and MMP-9 expression. Meanwhile, I could induce apoptosis of A549 cells through the intrinsic pathway regulated by mitochondria. In addition, compound I inhibited the phosphorylation of PI3K, Akt and mTOR, suggesting a correlation between blocking the PI3K/Akt/mTOR pathway and the above antitumor activities. These results suggest that compound I may be a future drug for the development of new potential drug candidates against lung cancer.

Category: bromides-buliding-blocks, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gao, Min team published research in Medicinal Chemistry (Sharjah, United Arab Emirates) in 2021 | 585-76-2

Related Products of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Related Products of 585-76-2.

Gao, Min;Lv, QiaoLi;Zhang, HouPan;Tu, GuoGang research published 《 Synthesis and 4D-QSAR Studies of Alanine Hydroxamic Acid Derivatives as Aminopeptidase N Inhibitors》, the research content is summarized as follows. As a target for anticancer treatment, aminopeptidase N (APN) shows its overexpression on diverse malignant tumor cells and associates with cancer invasion, angiogenesis and metastasis. The objective of the study was the design, synthesis and biol. activity evaluation of alanine hydroxamic acid derivatives as APN inhibitors, and investigation of the binding mode of inhibitors in the APN active site. Alanine hydroxamic acid derivatives were synthesized and evaluated for their in vitro anti-cancer activity using CCK-8 assay. Mol. docking and 4D-QSAR studies were carried out to suggest the mechanism of biol. activity. Compared with Bestatin, compound 9b showed the best APN inhibition activity. The putative binding mode of 9b in the APN active site was also discussed. Moreover, the robust and reliable 4D-QSAR model exhibited the following statistics: R2 = 0.9352, q2LOO = 0.8484, q2LNO =0.7920, R2Pred = 0.8739. Newly synthesized compounds exerted acceptable anticancer activity and further investigation of the current scaffold would be beneficial.

Related Products of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gao, Hui team published research in Angewandte Chemie, International Edition in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Computed Properties of 585-76-2

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Computed Properties of 585-76-2

Gao, Hui;Lin, Shuang;Zhang, Shuning;Chen, Weijie;Liu, Xiawen;Yang, Guang;Lerner, Richard A.;Xu, Hongtao;Zhou, Zhi;Yi, Wei research published 《 gem-Difluoromethylene Alkyne-Enabled Diverse C-H Functionalization and Application to the on-DNA Synthesis of Difluorinated Isocoumarins》, the research content is summarized as follows. Using gem-difluoromethylene alkynes as effectors, unprecedented diverse C-H activation/[4+2] annulations of simple benzoic acids are reported. The chemodivergent reaction outcomes are well-tuned by Rh/Ir-catalyzed system; in the RhIII catalysis, 3-alkenyl-1H-isochromen-1-one and 3,4-dialkylideneisochroman-1-one skeletons are afforded in a solvent-dependent manner (e.g., benzoic acid + III (in MeOH)/III (in TFE)) under whereas difluoromethylene-substituted 1H-isochromen-1-ones (IV) are generated under the IrIII-catalyzed system. Mechanistic studies revealed that unusually double β-F eliminations and fluorine effect-induced regioselective reductive elimination are independently involved to enable distinct reaction modes for divergent product formations. Besides, synthetic application in both the derivatization of obtained diene products and the on-DNA synthesis of DNA-tagged difluorinated isocoumarin have been demonstrated, which manifested great potential for synthetic utility of the developed protocols.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Computed Properties of 585-76-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gao, Cheng-Long team published research in Angewandte Chemie, International Edition in 2020 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Reference of 4897-84-1

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 4897-84-1.

Gao, Cheng-Long;Hou, Gui-Ge;Liu, Jin;Ru, Tong;Xu, Ya-Zhou;Zhao, Shun-Yi;Ye, Hui;Zhang, Lu-Yong;Chen, Kai-Xian;Guo, Yue-Wei;Pang, Tao;Li, Xu-Wen research published 《 Synthesis and Target Identification of Benzoxepane Derivatives as Potential Anti-Neuroinflammatory Agents for Ischemic Stroke》, the research content is summarized as follows. Benzoxepane derivatives were designed and synthesized, and one hit compound emerged as being effective in vitro with low toxicity. In vivo, this hit compound ameliorated both sickness behavior through anti-inflammation in LPS-induced neuroinflammatory mice model and cerebral ischemic injury through anti-neuroinflammation in rats subjected to transient middle cerebral artery occlusion. Target fishing for the hit compound using photoaffinity probes led to identification of PKM2 as the target protein responsible for anti-inflammatory effect of the hit compound Furthermore, the hit exhibited an anti-neuroinflammatory effect in vitro and in vivo by inhibiting PKM2-mediated glycolysis and NLRP3 activation, indicating PKM2 as a novel target for neuroinflammation and its related brain disorders. This hit compound has a better safety profile compared to shikonin, a reported PKM2 inhibitor, identifying it as a lead compound in targeting PKM2 for the treatment of inflammation-related diseases.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Reference of 4897-84-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary