Ganesan, Moorthiamma Sarathy team published research in Journal of Heterocyclic Chemistry in 2021 | 585-76-2

Related Products of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Related Products of 585-76-2.

Ganesan, Moorthiamma Sarathy;Raja, Kamatchi Kanmani;Murugesan, Sankaranarayanan;Karankumar, Banoth;Faheem, Faheem;Thirunavukkarasu, Sappanimuthu;Shetye, Gauri;Ma, Rui;Franzblau, Scott G.;Wan, Baojie;Rajagopal, Gurusamy research published 《 Quinoline-Proline, Triazole Hybrids: Design, Synthesis, Antituberculosis, Molecular Docking, and ADMET Studies》, the research content is summarized as follows. A series of novel quinoline-proline hybrids I (R = Ph, 4-fluorophenyl, 4-benzoylphenyl, etc.) and quinoline-proline-1,2,3-triazole hybrids II (R1 = OH, ethyloxidanyl, phenylaminyl) were synthesized by click chem. based on mol. hybridization concept and characterized by NMR, mass spectrometry, and elemental anal. All the titled target compounds I and II were tested for antitubercular activity by MABA and LORA methods by in vitro. Interestingly, two compounds I [R = 4-nitrophenyl (III) and 4-fluorophenyl (IV)] exhibited significant activity against the tested Mycobacterium tuberculosis H37Rv strain. Further, the cytotoxicity (CC50) profile of the titled compounds against the Vero cell was performed and discussed. A mol. docking study of the hit compounds III and IV was also performed to find their putative binding interaction with the active site of the target proteins. Finally, in silico ADMET properties were also predicted for all the synthesized mols. to evaluate their drug-likeness behavior.

Related Products of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gan, Jianbo team published research in ChemistrySelect in 2021 | 90-59-5

Related Products of 90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Related Products of 90-59-5.

Gan, Jianbo;Luo, Naili;Wu, Chengjun;Wan, Xinyi;Wang, Cunde research published 《 Efficient Synthesis of Chromeno[4,3,2-de][1,6]naphthyridine Derivatives via Pseudo Four-Component Reaction》, the research content is summarized as follows. A novel approach for the synthesis of substituted 5-amino-4-cyanochromeno[4,3,2-de][1,6]naphthyridine-1-carboxylates I [R1 = H, 8-OEt, 10-Cl, etc.; R2 = Me, Ph, 4-FC6H4, 4-BrC6H4; R3 = Me, Et] from a wide range of substituted 2-hydroxybenzaldehydes with alkyl 3-oxo-3-substituted propanoates and malononitrile was investigated via propionic acid-promoted cascade Knoevenagel condensation/Michael addition/intramolecularly nucleophilic addition accompanied by oxidative aromatization. This procedure provided a highly efficient and facile route to functionalized chromenonaphthyridines from readily available substrates under mild reaction conditions.

Related Products of 90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gambhir, Geetu team published research in Asian Journal of Chemistry in 2022 | 5445-17-0

Product Details of C4H7BrO2, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 5445-17-0, formula is C4H7BrO2, Name is Methyl 2-bromopropanoate. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Product Details of C4H7BrO2.

Gambhir, Geetu;Gautam, Drashya;Saya, Laishram;Kumar, Amit;Kumar, Subodh;Singh, Aarushi;Singh, Snigdha;Chandra, Ramesh;Hooda, Sunita research published 《 A novel terpolymer membrane-based electrode sensor for selective determination of Cd(II) ions》, the research content is summarized as follows. A new polymeric membrane sensor for Cd(II) ion based on Me acrylate-acrylonitrile-Me methacrylate terpolymer as membrane carrier has been synthesized via atom transfer radical polymerization (ATRP) method at 60°C. Preliminary investigation with the membrane exhibited promising selectivity for Cd(II) ion with a slope of 32.02 mV/decade and the same could be estimated in the concentration range of 1 x 10-6 – 1 x 10-1 M in the working pH range of 4-6 for up to 90 days. The potentials generated across the membrane were reproducible and the response time was less than one minute. The electrode works well even in a partially non-aqueous media. The effect of surfactant and detergent on the working of Cd(II) selective electrode was also studied. A decrease in potential was observed in the presence of appreciable amount of surfactant and detergent. Addition of plasticisers was found to greatly improve the performance of membrane, best results being obtained with the membrane ratio (NaTPB:TP:TBP: 1:100:06), exhibiting a working concentration range of 1 x 10-6 – 1 x 10-1 mol L-1 with a short response time of 10 s. The proposed sensor shows significantly good selectivity toward Cd(II) ion in comparison with some alkali, alk. earth, transition and heavy metal ions. It was successfully employed as an indicator electrode in potentiometric titration of cadmium(II) ions against EDTA solution

Product Details of C4H7BrO2, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gal Reddy, Potuganti team published research in ChemistrySelect in 2020 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Formula: C9H9BrO3

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Formula: C9H9BrO3.

Gal Reddy, Potuganti;Reddy Indukuri, Divakar;Alla, Manjula research published 《 CuI/I2-Catalyzed Concise Synthesis of Substituted 6-Aminoisoquinolinoquinazoline Carboxylates from Anthranilamide》, the research content is summarized as follows. A one pot sequential addition protocol for synthesis of polycyclic quinazolines with β-amino acid motifs has been achieved starting from anthranilamide. Initial in situ formation of 2-(2-bromophenyl)quinazolin-4(3H)-one followed by addition of alkyl cyanoacetates catalyzed by copper (I) salts gives the target compound in good to excellent yields. The expedient and facile cascade protocol involves nucleophilic α-arylation, intramol. cycloamidation of nitriles followed by 1,3-hydrogen shift allowing direct access to 6-amino-8-oxo-8H-isoquinolino[1,2-b]quinazoline-5-carboxylates I (R = CN, COOMe, COOt-Bu, COOBn, etc.; R1 = H, 10-Cl, 10-F; R2 = H, 2-F, 3-Me, etc.).

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Formula: C9H9BrO3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Furniel, Lucas G. team published research in Chemical Science in 2021 | 6911-87-1

Application In Synthesis of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 6911-87-1, formula is C7H8BrN, Name is 4-Bromo-N-methylaniline. Organic compounds having carbon bonded to bromine are called organic bromides. Application In Synthesis of 6911-87-1.

Furniel, Lucas G.;Echemendia, Radell;Burtoloso, Antonio C. B. research published 《 Cooperative copper-squaramide catalysis for the enantioselective N-H insertion reaction with sulfoxonium ylides》, the research content is summarized as follows. The first examples of a highly efficient and enantioselective carbene-mediated insertion reaction, from a sulfur ylide, were described. By way of a catalytic asym. insertion reaction into N-H bonds from carbonyl sulfoxonium ylides and anilines, using a copper-bifunctional squaramide cooperative catalysis approach, thirty-seven α-arylglycine esters were synthesized in enantiomeric ratios up to 92:8 (99:1 after a single recrystallization) and reaction yields ranging between 49-96%. Furthermore, the protocol benefited from quick reaction times and was conducted in a straightforward manner.

Application In Synthesis of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fung, Tony Ho-Ching team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 244205-40-1

COA of Formula: C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Organic compounds having carbon bonded to bromine are called organic bromides. COA of Formula: C6H6BBrO2.

Fung, Tony Ho-Ching;Wong, Cheok-Lam;Tang, Wai-Kit;Leung, Ming-Yi;Low, Kam-Hung;Yam, Vivian Wing-Wah research published 《 Photochromic dithienylethene-containing four-coordinate boron(III) compounds with a spirocyclic scaffold》, the research content is summarized as follows. A new series of four-coordinate boron compounds bearing a photochromic dithienylethene-containing CĈ ligand and an ancillary NĈ ligand have been successfully designed and synthesized. These compounds exhibit reversible photochromism upon photoexcitation with percentage conversions of 71-96% and readily tuneable photocycloreversion quantum yields by convenient modification of the ancillary ligand to turn on the thermally activated upconversion from the lower-lying unreactive excited state to the higher-lying photoreactive excited state.

COA of Formula: C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fung, Alfred. K. K. team published research in Journal of Organic Chemistry in 2021 | 5445-17-0

Product Details of C4H7BrO2, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 5445-17-0, formula is C4H7BrO2, Name is Methyl 2-bromopropanoate. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Product Details of C4H7BrO2.

Fung, Alfred. K. K.;Yu, Li-Juan;Sherburn, Michael S.;Coote, Michelle L. research published 《 Atom Transfer Radical Polymerization-Inspired Room Temperature (sp3)C-N Coupling》, the research content is summarized as follows. A simple nonphotochem. procedure is reported for Cu(I)-catalyzed C-N coupling of aliphatic halides with amines and amides. The process is loosely based on the Goldberg reaction but takes place readily at room temperature It uses Cu(I)Br, a commonly used and inexpensive atom transfer radical polymerization precatalyst, along with the cheap ligand N,N,N’,N”,N”-pentamethyldiethylenetriamine, to activate the R-X bond of the substrate via inner-sphere electron transfer. The procedure brings about productive C-N bond formation between a range of alkyl halide substrates with heterocyclic aromatic amines and amides. The mechanism of the coupling step, which was elucidated through application of computational methods, proceeds via a unique Cu(I) → Cu(II) → Cu(III) → Cu(I) catalytic cycle, involving (a) inner-sphere electron transfer from Cu(I) to the alkyl halide to generate the alkyl radical; (b) successive coordination of the N-nucleophile and the radical to Cu(II); and finally reductive elimination. In the absence of a nucleophile, debrominative homocoupling of the alkyl halide occurs. Control experiments rule out SN-type mechanisms for C-N bond formation.

Product Details of C4H7BrO2, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fujiyoshi, Kohei team published research in Synlett in 2021 | 70-23-5

Synthetic Route of 70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 70-23-5, formula is C5H7BrO3, Name is Ethyl 3-bromo-2-oxopropanoate. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Synthetic Route of 70-23-5.

Fujiyoshi, Kohei;Kawashima, Shigehiro A.;Yamatsugu, Kenzo;Kanai, Motomu research published 《 A Single-Step Asymmetric Phosphodiester Synthesis from Alcohols with Phosphoenolpyruvate Phosphodiester》, the research content is summarized as follows. Phosphodiesters ROP(O)(OH)(OR1) (1231; R = 3-arylpropyl, phenethyl, carbohydrate, steroid, amino acid; R1 = Me, Et) were prepared by organocatalytic transesterification of phosphoenolpyruvate (R1O)2P(O)OC(:CH2)CO2H in the presence of 1 equiv of Me nicotinate. Phosphodiesters are important structural motifs observed in a diverse field of mol. science. It is, thus, important to develop a simple and robust way to synthesize them from corresponding alcs. Here we report a single-step asym. phosphodiester synthesis from alcs. with phosphoenolpyruvate phosphodiesters as phosphoryl donors. This transformation allows for the use of various functionalized alcs. as substrates and would be useful for diverse fields including biol. and medicine.

Synthetic Route of 70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fujita, Taiki team published research in Angewandte Chemie, International Edition in 2021 | 4224-70-8

Electric Literature of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid, Electric Literature of 4224-70-8

Fujita, Taiki;Yamane, Mina;Sameera, W. M. C.;Mitsunuma, Harunobu;Kanai, Motomu research published 《 Siloxy Esters as Traceless Activators of Carboxylic Acids: Boron-Catalyzed Chemoselective Asymmetric Aldol Reaction》, the research content is summarized as follows. Herein, it was identified that in situ pre-conversion of carboxylic acids to siloxy esters facilitated the boron-catalyzed direct aldol reaction, leading to the development of carboxylic acid-selective, catalytic, asym. aldol reaction applicable to multifunctional substrates. Combining exptl. and computational studies rationalized the reaction mechanism and led to the proposal of Si/B enediolates as the active species. The silyl ester formation facilitated both enolization and catalyst turnover by acidifying the α-proton of substrates and attenuating poisonous Lewis bases to the boron catalyst.

Electric Literature of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fu, Yatong team published research in Inorganic Chemistry in 2022 | 585-76-2

Quality Control of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Quality Control of 585-76-2

Fu, Yatong;Li, Yu;Luo, Donghong;Lu, Yibo;Huang, Jiajun;Yang, Ziyi;Lu, Jian;Jiang, Yuan-Ye;Lu, Ju-You research published 《 Palladium-Catalyzed Regioselective B(3,4)-H Acyloxylation of o-Carboranes》, the research content is summarized as follows. The authors disclosed herein an efficient regioselective B(3,4)-H activation via a ligand strategy, affording B(3)-monoacyloxylated and B(3,4)-diacyloxylated o-carboranes. The identification of amino acid and H3PO4 ligand was crucial for the success of B(3)-mono- and B(3,4)-diacyloxylation, resp. This ligand approach was compatible with a broad range of carboxylic acids. The functionalization of complex drug mols. was demonstrated. Other acyloxyl sources, including NaOBz, benzoic anhydride and iodobenzene diacetate, were also tolerated.

Quality Control of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary