Fu, Jiaxu team published research in Chemical Papers in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Formula: C6H7BrN2

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine, Formula: C6H7BrN2

Fu, Jiaxu;Yan, Liuqing;Wang, Shuang;Song, Hongying;Gu, Qiang;Zhang, Yumin research published 《 Microwave-assisted synthesis and luminescent properties of triphenylamine substituted mono- and di- branched benzimidazole derivatives》, the research content is summarized as follows. In the present work, the synthesis of (benzoimidazolyl)-N,N-diphenylanilines I [R = H, Cl, Br, Me, CO2H] and II using sodium metasulfite (Na2S2O5) and p-toluenesulfonic acid (PTSA) sep. as catalysts was studied. Herein, the liquid phase microwave method was chosen to synthesize triphenylamine substituted mono- and di-branched benzimidazole derivatives compared with the solid phase microwave method, and the reaction conditions were optimized using Na2S2O5 as a catalyst in N,N-dimethylformamide (DMF) solvent. A possible reaction mechanism was discussed. On this basis, PTSA using a catalyst was introduced into the reaction, the yields of the target products were evidently increased (the yield was enhanced 5-22% using PTSA as a catalyst). It is found that PTSA only acted as a catalyst, while Na2S2O5 acted as both a catalyst and an oxidant, and PTSA could effectively catalyze the synthesis of benzimidazoles. Further, the luminescent properties of the synthesized compounds were comparatively studied after the structures of the synthesized compounds were confirmed. The results showed that the fluorescence quantum yield and the intensity of the synthesized compounds were enhanced with the increase in the number of substituted benzimidazole on triphenylamine, and the different substituents on 5-position of benzimidazole also had significant effect on the luminescent properties of the compound

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Formula: C6H7BrN2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fu, Dingqiang team published research in European Journal of Medicinal Chemistry in 2021 | 4224-70-8

COA of Formula: C6H11BrO2, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 4224-70-8, formula is C6H11BrO2, The most pervasive is the naturally produced bromomethane. COA of Formula: C6H11BrO2

Fu, Dingqiang;Yuan, Yi;Qin, Fengming;Xu, Yan;Cui, Xin;Li, Guangxun;Yao, Shaohua;Deng, Yun;Tang, Zhuo research published 《 Design, synthesis and biological evaluation of tyrosinase-targeting PROTACs》, the research content is summarized as follows. The human tyrosinase is the most prominent therapeutic target for pigmentary skin disorders. However, the overwhelming majority efforts have been devoted to search mushroom tyrosinase inhibitors, which show poor inhibitory activity on human tyrosinase and certain side effects that cause skin damage in practical application. Herein, a series of degraders that directly targeted human tyrosinase was firstly designed and synthesized based on newly developed PROTAC technol. The best PROTAC I induced human tyrosinase degradation obviously in dose and time-dependent manner, and its mechanism of inducing tyrosinase degradation has also been clearly demonstrated. Besides, encouraging results that low-toxicity PROTAC I was applied to reduce zebrafish melanin synthesis have been obtained, highlighting the potential to treatment of tyrosinase-related disorders. Moreover, this work has innovatively expanded the application scope of PROTAC technol. and laid a solid foundation for further development of novel drugs treating pigmentary skin disorders.

COA of Formula: C6H11BrO2, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Frija, Luis M. T. team published research in Journal of Molecular Structure in 2020 | 5392-10-9

Synthetic Route of 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Organic compounds having carbon bonded to bromine are called organic bromides. Synthetic Route of 5392-10-9.

Frija, Luis M. T.;Fernandes, Andre L.;Cristiano, M. Lurdes S.;Pombeiro, Armando J. L. research published 《 Solvent-free oxidation of benzyl alcohols catalysed by a tetrazole-saccharinate Zn(II) complex under microwave radiation: the role of the ligand and the reaction mechanism》, the research content is summarized as follows. Herein, an efficient methodol. for the microwave-assisted peroxidative oxidation of benzyl alcs. to the corresponding aldehydes by using a novel and stable tetrazole-saccharinate zinc(II) catalyst, along with some insights into the reaction mechanism was presented. This methodol. was distinguished by the use of easily available and cheap reagents on the genesis of the zinc catalyst, mild reaction conditions, very short reaction periods (5-20 min) and no need to add an organic solvent. Furthermore, the use of TBHP (70%. aqueous) as oxidizing agent turned this protocol a convenient one for benzyl alc. oxidation in yields up to 98%.

Synthetic Route of 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Frank, Aziza team published research in Tetrahedron Letters in 2022 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Application In Synthesis of 4897-84-1

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 4897-84-1, formula is C5H9BrO2, The most pervasive is the naturally produced bromomethane. Application In Synthesis of 4897-84-1

Frank, Aziza;Hamidi, Negar;Xue, Fengtian research published 《 Regioselective alkylation of 2,4-dihydroxybenzyaldehydes and 2,4-dihydroxyacetophenones》, the research content is summarized as follows. A cesium bicarbonate-mediated alkylation of 2,4-dihydroxybenzaldehyde and 2,4-dihydroxyacetophenone to generate 4-alkylated 2-hydroxybenzaldehydes/2-hydroxyacetophenones I [R = Br, Me, OMe, etc.; R1 = H, Me] in acetonitrile at 80°C with excellent regioselectivity, up to 95% isolated yields, and broad substrate scope was reported.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Application In Synthesis of 4897-84-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Franchino, Allegra team published research in Journal of the American Chemical Society in 2022 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Reference of 244205-40-1

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 244205-40-1.

Franchino, Allegra;Marti, Alex;Echavarren, Antonio M. research published 《 H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis》, the research content is summarized as follows. A new strategy for enantioselective transition-metal catalysis is presented, wherein a H-bond donor placed on the ligand of a cationic complex allows precise positioning of the chiral counteranion responsible for asym. induction. The successful implementation of this paradigm is demonstrated in 5-exo-dig and 6-endo-dig cyclizations of 1,6-enynes, combining an achiral phosphinourea Au(I) chloride complex with a BINOL-derived phosphoramidate Ag(I) salt and thus allowing the 1st general use of chiral anions in Au(I)-catalyzed reactions of challenging alkyne substrates. Experiments with modified complexes and anions, 1H NMR titrations, kinetic data, and studies of solvent and nonlinear effects substantiate the key H-bonding interaction at the heart of the catalytic system. This conceptually novel approach, which lies at the intersection of metal catalysis, H-bond organocatalysis, and asym. counterion-directed catalysis, provides a blueprint for the development of supramolecularly assembled chiral ligands for metal complexes.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Reference of 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Forsberg, Leah K. team published research in Bioorganic & Medicinal Chemistry in 2018 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Electric Literature of 4897-84-1

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 4897-84-1, formula is C5H9BrO2, The most pervasive is the naturally produced bromomethane. Electric Literature of 4897-84-1

Forsberg, Leah K.;Davis, Rachel E.;Wimalasena, Virangika K.;Blagg, Brian S. J. research published 《 Exploiting polarity and chirality to probe the Hsp90 C-terminus》, the research content is summarized as follows. Inhibition of the Hsp90 C-terminus is an attractive therapeutic approach for the treatment of cancer. Novobiocin, the first Hsp90 C-terminal inhibitor identified, contains a synthetically complex noviose sugar that has limited the generation of structure-activity relationships for this region of the mol. The work described herein utilizes various ring systems as noviose surrogates to explore the size and nature of the surrounding binding pocket.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Electric Literature of 4897-84-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fok, Emily Y. team published research in Polyhedron in 2021 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., COA of Formula: C7H4Br2O2

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. COA of Formula: C7H4Br2O2.

Fok, Emily Y.;Show, Veronica L.;Johnson, Adam R. research published 《 Intramolecular hydroamination of trisubstituted aminoallenes catalyzed by titanium complexes of diaryl substituted tridentate imine-diols》, the research content is summarized as follows. The authors’ laboratory has developed catalysts based on earth abundant Ti for asym. reactions including intramol. hydroamination. Previously, Ti complexes of imine diol ligands showed improved enantioselectivity relative to complexes with bidentate amino alc. ligands. As the catalyst with the highest selectivity had di-tert-Bu substitution, the authors sought to increase the steric protection by preparing three new ligands with diaryl substitution. These ligands were readily prepared in two steps: 1st, synthesis of diaryl substituted salicylaldehydes by a Suzuki coupling and 2nd, a Schiff base condensation with a chiral amino alc. After characterizing the ligands, in situ hydroamination/cyclization with 6-methyl-hepta-4,5-dienylamine was carried out at 105-135° to give exclusively 2-(2-methyl-propenyl)-pyrrolidine with enantioselectivity up to 22%ee. Unexpected dimerization of the catalyst resulted in reduced activity, so the reaction required a catalyst loading of 10-20%.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., COA of Formula: C7H4Br2O2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fischer, Christian team published research in Synlett in 2022 | 1575-37-7

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine, Recommanded Product: 4-Bromobenzene-1,2-diamine

Fischer, Christian;Veprek, Nynke A.;Peitsinis, Zisis;Ruhmann, Klaus-Peter;Yang, Chao;Spradlin, Jessica N.;Dovala, Dustin;Nomura, Daniel K.;Zhang, Yingkai;Trauner, Dirk research published 《 De novo Design of SARS-CoV-2 Main Protease Inhibitors》, the research content is summarized as follows. The COVID-19 pandemic prompted many scientists to investigate remedies against SARS-CoV-2 and related viruses that are likely to appear in the future. As the main protease of the virus, M Pro, is highly conserved among coronaviruses, it has emerged as a prime target for developing inhibitors. Using a combination of virtual screening and mol. modeling, we identified small mols. that were easily accessible and could be quickly diversified. Biochem. assays confirmed a class of pyridones as low micromolar noncovalent inhibitors of the viral main protease.

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Firoozi, Somayeh team published research in Journal of Organic Chemistry in 2021 | 6911-87-1

6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., Formula: C7H8BrN

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 6911-87-1, formula is C7H8BrN, Name is 4-Bromo-N-methylaniline. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Formula: C7H8BrN.

Firoozi, Somayeh;Hosseini-Sarvari, Mona research published 《 Nanosized CdS as a Reusable Photocatalyst: The Study of Different Reaction Pathways between Tertiary Amines and Aryl Sulfonyl Chlorides through Visible-Light-Induced N-Dealkylation and C-H Activation Processes》, the research content is summarized as follows. The final products of the reaction of sulfonyl chlorides and tertiary amines in the presence of cadmium sulfide nanoparticles under visible light irradiation are highly dependent on the applied reaction conditions. Interestingly, with the change of a reaction condition, different pathways were conducted (visible-light-induced N-dealkylation or sp3 and sp2 C-H activation) that lead to different products such as secondary amines and various sulfonyl compounds Remarkably, all of these reactions were performed under visible light irradiation and an air atm. without any additive or oxidant in benign solvents or under solvent-free conditions. During this study, the CdS nanoparticles as affordable, heterogeneous, and recyclable photocatalysts were designed, successfully synthesized, and fully characterized and applied for these protocols. During these studies, intermediates resulting from the oxidation of tertiary amines are trapped during the photoinduced electron transfer (PET) process. The reaction was carried out efficiently with a variety of substrates to give the corresponding products at relatively short times in good to excellent yields in parallel with the use of the visible light irradiation as a renewable energy source. Most of these processes are novel or are superior in terms of cost effectiveness, safety, and simplicity to published reports.

6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., Formula: C7H8BrN

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Fiorucci, Stefano team published research in Frontiers in Pharmacology in 2022 | 4897-84-1

Recommanded Product: Methyl 4-bromobutanoate, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Organic compounds having carbon bonded to bromine are called organic bromides. Recommanded Product: Methyl 4-bromobutanoate.

Fiorucci, Stefano;Rapacciuolo, Pasquale;Fiorillo, Bianca;Roselli, Rosalinda;Marchiano, Silvia;Di Giorgio, Cristina;Bordoni, Martina;Bellini, Rachele;Cassiano, Chiara;Conflitti, Paolo;Catalanotti, Bruno;Limongelli, Vittorio;Sepe, Valentina;Biagioli, Michele;Zampella, Angela research published 《 Discovery of a potent and orally active dual GPBAR1/CysLT 1 R modulator for the treatment of metabolic fatty liver disease》, the research content is summarized as follows. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clin. need. Here, we report the discovery of a novel class of hybrid mols. designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathol. features in a preclin. model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development.

Recommanded Product: Methyl 4-bromobutanoate, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary