Chen, Jinying’s team published research in Chemical Biology & Drug Design in 2019 | CAS: 14660-52-7

Ethyl 5-bromovalerate(cas: 14660-52-7) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Application of 14660-52-7

Application of 14660-52-7In 2019 ,《Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer》 appeared in Chemical Biology & Drug Design. The author of the article were Chen, Jinying; Sang, Zitai; Jiang, Youjun; Yang, Chao; He, Linhong. The article conveys some information:

Fifty-eight quinazoline-based compounds were designed and synthesized based on the structural optimizations from the lead compound 23bb in an attempt to search for more potent dual HDAC1 and HDAC6 inhibitors. Among them, 32c (HDAC1, IC50 = 31.10 ± 0.37 nM; HDAC6, IC50 = 16.15 ± 0.62 nM) and 32d (HDAC1, IC50 = 37.00 ± 0.24 nM; HDAC6, IC50 = 35.00 ± 0.71 nM) were not only identified as potent dual-acting HDAC1 and HDAC6 inhibitors with over 10-fold selectivity to the other HDACs, but also displayed activities in tubulin acetylation and histone H3 acetylation induction. Importantly, both of them displayed strong antiproliferative activities against various tumor cell lines in vitro with IC50 values <40 nM, especially for hematol. tumors cells (U266 and RPMI8226, IC50 < 1 nM), which were even better than 23bb and SAHA. Furthermore, 32c showed a significant tumor growth inhibition (antitumor rate = 63.98%, p < 0.05) in the resistant MCF-7/ADR xenograft model without any obvious body weight changes and abnormal behaviors. The authors' findings validate that 32c is a potent dual inhibitor of HDAC1/6 that can be an efficacious treatment for breast cancer with Adriamycin resistance. In the experiment, the researchers used Ethyl 5-bromovalerate(cas: 14660-52-7Application of 14660-52-7)

Ethyl 5-bromovalerate(cas: 14660-52-7) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Application of 14660-52-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Su, Yingpeng’s team published research in Organic & Biomolecular Chemistry in 2020 | CAS: 5437-45-6

Benzyl 2-bromoacetate(cas: 5437-45-6) has been used in the alkylation of (-)-2,3-O-isopropylidene-D-threitol that afforded lipopeptide, 2-[(4R,5R)-5-({[(9H-fluoren-9-yl)methoxy]carbonylaminomethyl}-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]acetic acid.Reference of Benzyl 2-bromoacetate

Reference of Benzyl 2-bromoacetateIn 2020 ,《Diastereoselective synthesis of spiro-cyclopropanyl-cyclohexadienones via direct sulfide-catalyzed [2 + 1] annulation of para-quinone methides with bromides》 appeared in Organic & Biomolecular Chemistry. The author of the article were Su, Yingpeng; Zhao, Yanan; Chang, Bingbing; Ling, Qinqin; Feng, Yawei; Zhao, Xiaolong; Huang, Danfeng; Wang, Ke-Hu; Huo, Congde; Hu, Yulai. The article conveys some information:

An efficient sulfide-catalyzed [2 + 1] annulation of para-quinone methides (p-QMs) with diverse bromides was achieved. This catalytic strategy provided an efficient and straightforward protocol for accessing a variety of spiro-cyclopropanyl-cyclohexadienone compounds in good to excellent yields (64% to 96% yields) with outstanding diastereoselectivities (>20 : 1 dr) displaying good functional group tolerance as well as gram-scale capacity. The experimental process involved the reaction of Benzyl 2-bromoacetate(cas: 5437-45-6Reference of Benzyl 2-bromoacetate)

Benzyl 2-bromoacetate(cas: 5437-45-6) has been used in the alkylation of (-)-2,3-O-isopropylidene-D-threitol that afforded lipopeptide, 2-[(4R,5R)-5-({[(9H-fluoren-9-yl)methoxy]carbonylaminomethyl}-2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]acetic acid.Reference of Benzyl 2-bromoacetate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kahl, Dylan J.’s team published research in Journal of Medicinal Chemistry in 2019 | CAS: 3395-91-3

Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Electric Literature of C4H7BrO2

Electric Literature of C4H7BrO2In 2019 ,《5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma》 was published in Journal of Medicinal Chemistry. The article was written by Kahl, Dylan J.; Hutchings, Kim M.; Lisabeth, Erika Mathes; Haak, Andrew J.; Leipprandt, Jeffrey R.; Dexheimer, Thomas; Khanna, Dinesh; Tsou, Pei-Suen; Campbell, Phillip L.; Fox, David A.; Wen, Bo; Sun, Duxin; Bailie, Marc; Neubig, Richard R.; Larsen, Scott D.. The article contains the following contents:

Through a phenotypic high-throughput screen using a serum response element luciferase promoter, we identified a novel 5-aryl-1,3,4-oxadiazol-2-ylthiopropionic acid lead inhibitor of Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated gene transcription with good potency (IC50 = 180 nM). We were able to rapidly improve the cellular potency by 5 orders of magnitude guided by sharply defined and synergistic SAR. The remarkable potency and depth of the SAR, as well as the relatively low mol. weight of the series, suggests, but does not prove, that binding to the unknown mol. target may be occurring through a covalent mechanism. The series nevertheless has no observable cytotoxicity up to 100 μM. Ensuing pharmacokinetic optimization resulted in the development of two potent and orally bioavailable anti-fibrotic agents that were capable of dose-dependently reducing connective tissue growth factor gene expression in vitro as well as significantly reducing the development of bleomycin-induced dermal fibrosis in mice in vivo. After reading the article, we found that the author used Methyl 3-bromopropanoate(cas: 3395-91-3Electric Literature of C4H7BrO2)

Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Electric Literature of C4H7BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Zhang, Yan’s team published research in Journal of Carbohydrate Chemistry in 2022 | CAS: 21085-72-3

(2R,3R,4S,5S,6S)-2-Bromo-6-(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(cas: 21085-72-3) may be used for the synthesis of HMR1098-S-Glucuronide Methyl Ester, a new K-ATP-blocking agent being developed as a drug for prevention of sudden cardiac death.Formula: C13H17BrO9

Formula: C13H17BrO9In 2022 ,《A novel synthesis of tetrahydrocortisone 3-glucuronide》 was published in Journal of Carbohydrate Chemistry. The article was written by Zhang, Yan; Zhang, Suqing; Li, Rui; Shen, Jingshan; Jiang, Xiangrui; Aisa, Haji A.. The article contains the following contents:

A new route for the synthesis of tetrahydrocortisone 3-glucuronide has been developed with cortisone acetate as a starting material. The key step was using lithium tri-tert-butoxyaluminum hydride to reduce the C-3 carbonyl group of 5β-dihydrocortisone acetate to provide 3α-5β-tetrahydrocortisone acetate. Then, Koenig-Knorr method was used for glycosylation with glycosyl bromide as the donor, cadmium carbonate as promoter and 4Å mol. sieves as dehydrating agent to give high yield of the desired product. The new route is shorter and gives higher yield than that reported in the literature. In the part of experimental materials, we found many familiar compounds, such as (2R,3R,4S,5S,6S)-2-Bromo-6-(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(cas: 21085-72-3Formula: C13H17BrO9)

(2R,3R,4S,5S,6S)-2-Bromo-6-(methoxycarbonyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate(cas: 21085-72-3) may be used for the synthesis of HMR1098-S-Glucuronide Methyl Ester, a new K-ATP-blocking agent being developed as a drug for prevention of sudden cardiac death.Formula: C13H17BrO9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Taha, Taha Y.’s team published research in ACS Medicinal Chemistry Letters in 2017 | CAS: 3395-91-3

Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.HPLC of Formula: 3395-91-3

HPLC of Formula: 3395-91-3In 2017 ,《Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline-Based Histone Deacetylase 8 Selective Inhibitors》 was published in ACS Medicinal Chemistry Letters. The article was written by Taha, Taha Y.; Aboukhatwa, Shaimaa M.; Knopp, Rachel C.; Ikegaki, Naohiko; Abdelkarim, Hazem; Neerasa, Jayaprakash; Lu, Yunlong; Neelarapu, Raghupathi; Hanigan, Thomas W.; Thatcher, Gregory R. J.; Petukhov, Pavel A.. The article contains the following contents:

Histone deacetylase 8 (HDAC8) is a promising drug target for multiple therapeutic applications. Here, we describe the modeling, design, synthesis, and biol. evaluation of a novel series of C1-substituted tetrahydroisoquinoline (TIQ)-based HDAC8 inhibitors. Minimization of entropic loss upon ligand binding and use of the unique HDAC8 “”open”” conformation of the binding site yielded a successful strategy for improvement of both HDAC8 potency and selectivity. The TIQ-based I and II exhibited the highest 82 and 55 nM HDAC8 potency and 330- and 135-fold selectivity over HDAC1, resp. Selectivity over other class I isoforms was comparable or better, whereas inhibition of HDAC6, a class II HDAC isoform, was below 50% at 10 μM. The cytotoxicity of I and II was evaluated in neuroblastoma cell lines, and II displayed concentration-dependent cytotoxicity similar to or better than that of PCI-34051. The selectivity of I and II was confirmed in SH-SY5Y cells as both did not increase the acetylation of histone H3 and α-tubulin. Discovery of the novel TIQ chemotype paves the way for the development of HDAC8 selective inhibitors for therapeutic applications. In the part of experimental materials, we found many familiar compounds, such as Methyl 3-bromopropanoate(cas: 3395-91-3HPLC of Formula: 3395-91-3)

Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.HPLC of Formula: 3395-91-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Henry, Sean P.’s team published research in Journal of Medicinal Chemistry in 2019 | CAS: 7051-34-5

(Bromomethyl)cyclopropane(cas: 7051-34-5) is used as a synthetic building block for the introduction of the cyclopropylmethyl group. It was also used in the synthesis of 1,4-dienes via iron-catalyzed cross-coupling with alkenyl Grignard reagents.COA of Formula: C4H7Br

COA of Formula: C4H7BrIn 2019 ,《Structural Simplification of a Tetrahydroquinoline-Core Peptidomimetic μ-Opioid Receptor (MOR) Agonist/δ-Opioid Receptor (DOR) Antagonist Produces Improved Metabolic Stability》 was published in Journal of Medicinal Chemistry. The article was written by Henry, Sean P.; Fernandez, Thomas J.; Anand, Jessica P.; Griggs, Nicholas W.; Traynor, John R.; Mosberg, Henry I.. The article contains the following contents:

We have previously reported a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands to serve as potential nonaddictive opioid analgesics. These ligands have been shown to be active in vivo, do not manifest withdrawal syndromes or reward behavior in conditioned-place preference assays in mice, and do not produce dependence. Although these attributes are promising, these analogs exhibit poor metabolic stability in mouse liver microsomes, likely due to the central tetrahydroquinoline scaffold in this series. As such, a structure-activity relationship (SAR) campaign was pursued to improve their metabolic stability. This resulted in a shift from our original bicyclic tetrahydroquinoline core to a monocyclic benzylic-core system. By eliminating one of the rings in this scaffold and exploring the SAR of this new core, two promising analogs were discovered. These analogs (5l and 5m) had potency and efficacy values at MOR better or comparable to morphine, retained their DOR-antagonist properties, and showed a 10-fold improvement in metabolic stability. The experimental part of the paper was very detailed, including the reaction process of (Bromomethyl)cyclopropane(cas: 7051-34-5COA of Formula: C4H7Br)

(Bromomethyl)cyclopropane(cas: 7051-34-5) is used as a synthetic building block for the introduction of the cyclopropylmethyl group. It was also used in the synthesis of 1,4-dienes via iron-catalyzed cross-coupling with alkenyl Grignard reagents.COA of Formula: C4H7Br

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Thompson, H. E.’s team published research in Botanical Gazette (Chicago) in 1946 | CAS: 116529-61-4

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In contrast, terrestrial plants account only for a few bromine-containing compounds.COA of Formula: C7H4BrNO4

《New growth-regulating compounds. I. Summary of growth-inhibitory activities of some organic compounds as determined by three tests》 was published in Botanical Gazette (Chicago) in 1946. These research results belong to Thompson, H. E.; Swanson, Carl P.; Norman, A. G.. COA of Formula: C7H4BrNO4 The article mentions the following:

cf. Newman, et al. C.A. 41, 3774i. Growth-regulating substances were prepared and subjected to 3 tests. In each a common reference material, (2,4-dichlorophenoxy)acetic acid (I), was employed and the results of any test were expressed as a percentage of the inhibition produced concurrently by I. The primary test, Test A (Corn Germination Test), involved the determination of inhibition of elongation of the primary root of germinating corn. Corn grains were germinated at 27° in Petri dishes containing 20 mL. of an aqueous solution of the compound to be tested at a concentration of 10 p.p.m. After 4 days of growth the length of the primary root of each plant was measured. Inhibition of growth was determined by subtracting the average length of the primary roots of the treated seeds from that of the control seeds, expressed in percentage. In Test B (Kidney-Bean Single-Droplet Water Test) kidney beans were placed in pots containing 1 lb. soil. After 7-10 days each plant was treated with 0.02 mL. of an aqueous solution containing 200 p.p.m. (4 γ) of the compound to be tested and 0.5% of Carbowax 1500. Treatment was applied to the upper surface of one of the primary leaves at a point along the midrib approx. one-eighth in. from the point of attachment of the blade and petiole. On the 10th day after treatment the fresh weight of that portion of each plant above the second node was determined Controls untreated and also treated with I were included in each test. Test C (Kidney-Bean Single-Droplet Oil Test) was essentially the same as Test B but 0.01 mL. of solution was applied containing 5γ in oil of the compound to be tested. Tri-Bu phosphate, at a concentration of 0.2%, was used as a co-solvent for compounds not directly soluble or miscible with oil. The introduction of I could be accomplished only in this way. Close numerical agreement was not necessarily expected between the 3 tests. The degree of inhibition produced by I in Tests B and C at different times of the year was not wholly identical and was affected by rate of growth. Test A was the most reproducible and formed the primary basis for detection of inhibitory activity and was reliable in separating those compounds that possess a high inhibitory activity for most broad-leaved plants from those with little or no activity at the same concentration Satisfactory agreement was found between Tests A and B with discrepancies in the direction of a lower activity by Test B. Variation between replications was greatest in Test C but the results were satisfactory in separating active inhibitors from those with low activity. Compounds showing high activity are promising for use as herbicides. The compounds tested have been classified into groups according to activity and the results under 3 tests reported. The following, as Group I, are compounds possessing 80% or more of the activity of I in Test A: (2-bromo-4-chlorophenoxy)acetic acid; Bu (2,4,5-trichlorophenoxy) acetate; (2-chloro-4-bromophenoxy)acetic acid; NH4 4-chlorocinnamate; α(4-chlorophenoxy)acetamide; (3-chlorophenoxy)acetic acid; 4-isomer; α-(2,4-dichlorophenoxy)acetamide; 2-(2,4-dichlorophenoxyacetamido)-1-butanol; Na 4-(2,4-dichlorophenoxyacetamido)-2,5-dichlorobenzenesulfonate; 2-(2,4-dichlorophenoxyacetamido)-2-ethyl-1,3-propanediol; 2-(2,4-dichlorophenoxyacetamido)-2-(hydroxymethyl)-1,3-propanediol; 2-(2,4-dichlorophenoxyacetamido)-2-methyl-1,3-propanediol; 2-(2,4-dichlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(2,4-dichlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(2,4-dichlorophenoxyacetamido)-1-naphthol-3,6-disulfonic acid; (3,4-dichlorophenoxy)acetic acid; 2,5-isomer; (2,4-dichlorophenoxy)acetic anhydride; α-(2,4-dichlorophenoxy)-4-sulfoacetanilide; (2,4-dichlorophenoxy)acetohydroxamic acid; (2,4-dichlorophenoxy) acetyl chloride; (2,4-dichlorophenoxyacetyl)guanidine; N-(2,4-dichlorophenoxyacetyl)urea; α-(2,4-dichlorophenoxy)butyric acid; 2-diethylaminoethyl (2,4-dichlorophenoxy)acetate; 2-diethylaminoethyl (2,4,5-trichlorophenoxy)acetate; 2,2-dimethyl-1,3-dioxolan-4-ylmethyl (2-methyl-4-chlorophenoxy)acetate; 1,4-bis(2,4,5-trichlorophenoxyacetamido)benzene; 1,3-isomer; Et (2,4-dichlorophenoxy)-acetate; Et (2-methyl-4-chlorophenoxy) acetate; Et 2-(2-methyl-4-chlorophenoxy) heptanoate; 2-hydroxyethyl (2,4-dichlorophenoxy)acetate; (2-iodo-4-chlorophenoxy)acetic acid; (2-methyl-4-bromophenoxy)acetic acid; (2-methyl-4-chlorophenoxy)acetamide; N-methyl-α-(4-chlorophenoxy)acetamide; 4-(2-methyl-4-chlorophenoxyacetamido)benzenesulfonic acid; 2-(2-methyl-4-chlorophenoxyacetamido)-6,8-naphthalenedisulfonic acid; 2-(2-methyl-4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(2-methyl-4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 7-(2-methyl-4-chlorophenoxyacetamido)-1-naphthol-3,6-disulfonic acid; (2-methyl-4-chlorophenoxy)acetic acid; (2-methyl-6-chlorophenoxy)acetic acid; (2-methyl4-chlorophenoxy)acetic anhydride; (2-methyl-4-chlorophenoxy)acetyl chloride; (2-methyl-4-fluorophenoxy)acetic acid; N-methyl-α-(2,4,5-trichlorophenoxy)acetamide; 2-nitro-2-methylpropyl (2,4-dichlorophenoxy)acetate; 2-nitro-2-methylpropyl (2-methyl-4-chlorophenoxy)acetate; Ph chloroacetate; Ph (2-methyl-4-chlorophenoxy)acetate; iso-Pr (2-methyl-4-chlorophenoxy)acetate; 2-(2,4,5-trichlorophenoxyacetamido)-2-(hydroxymethyl)-1,3-propanediol; α-(2,4,5-trichlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; (2,4,5-trichlorophenoxy)acetic piperidide; α-(2,4,5-trichlorophenoxy)-3-chloroacetanilide; α-(2,4,5-trichlorophenoxy)-2,4-dimethylacetanilide; α-(2,4,5-trichlorophenoxy)-4-ethoxyacetanilide; α-(2,4,5-trichlorophenoxy)-4-methylacetanilide; α-(2,4,5-trichlorophenoxy)-2,4,6-trichloroacetanilide; [3-(trifluoromethyl)phenoxy] acetic acid; N-[tris(hydroxymethyl)methyl]-N-{2-hydroxy-3-[tris(hydroxymethyl)methylamino]-propyl}-α-(2,4-dichlorophenoxy)acetamide-HCl. The following, as Group II, are compounds possessing 50-79% of the activity of I in Test A: 2-aminoethanol bis-[(4-chlorophenoxy)acetate];(4-bromophenoxy)acetic acid; O-(2-carboxymethoxy-3-methyl-5-bromobenzoyl)glycolic acid; O-(2-carboxymethoxy-3-methyl-5-nitrobenzoyl)-glycolic acid; decyl dihydrogen orthophosphate; (2-chloro-4-tert-butylphenoxy)acetic acid; (2-chloro-4-iodophenoxy)acetic acid; 1-chloronaphthylacetic acid (mixture), ammonium salt; 2-(4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 4-(4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(4-chlorophenoxyacetamido)-1-naphthalenesulfonic acid; 8-(4-chlorophenoxyacetamido)-1-naphthol-3,6-disulfonic acid; α-(4-chlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; (4-chlorophenoxy)acetyl chloride; 2-(4-chlorophenoxyacetamido)-2-(hydroxymethyl)-1,3-propanediol; γ-(4-chlorophenoxy)-butyric acid; S-(4-chlorophenyl)thioglycolic acid; 2-butenyl (4-chlorophenoxy)acetate; (2,4-dibromophenoxy)acetic acid; α,β-dibromo-γ-phenylpropionyl chloride; 3,5-dichloro-2-bromobenzoic acid; (2,4-dichloro-5-bromophenoxy)acetic acid; (2,4-dichlorophenoxy)acetic piperidide; 4-(2,4-dichlorophenoxyacetamido)-1-naphthalenesulfonic acid; (2,4-dichlorophenoxy)acetonitrile; N’-(2,4-dichlorophenoxyacetyl)betaine hydrazide hydrochloride; α-(2,4-dichlorophenoxy)-N,N-diethylacetamide; α-(2,4-dichlorophenoxy-N-methylacetamide; NH4 γ-(2,4-dichlorophenoxy)butyrate; 2,4-dichlorophenylglycine; S-(2,5-dichlorophenyl)thioglycolyl chloride; 2,2-dimethyl-1,3-dioxolan-4-ylmethyl (4-chlorophenoxy)-acetate; β-(2,4-dimethylphenoxy)propionic acid; 3,5-dimethylpyrazole; Et 3-hydroxy-2-naphthoate; Et (2-methyl-4,6-dichlorophenoxy) acetate; 2-hydroxy-3-methyl-5-bromobenzoic acid; 2-hydroxy-3-methyl-5-iodobenzoic acid; 2-hydroxyethyl (4-chlorophenoxy)-acetate; N-2-hydroxyethyl-α-(2,4-dichlorophenoxy)acetamide; N-2-hydroxyethyl-α-(2-methyl-4-chlorophenoxy)-acetamide; 2-hydroxyethyl (2-methyl-4-chlorophenoxy)-acetate; 2-hydroxy-3-methylbenzoic acid; 2-hydroxy-5-nitrobenzoic acid; (2-methyl-4-bromo-6-carboxyphenoxy)acetic acid; α-(3-methyl-4-chlorophenoxy)acetamide; Me (4-chlorophenoxy)acetate; (2-methyl-5-chlorophenoxy)acetic acid; (3-methyl-4-chlorophenoxy)-acetic acid; α-(2-methyl-4-chlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; (3-methyl-4-chlorophenoxy)-acetyl chloride; Me (2,4-dibromophenoxy)acetate; Me (2,4-dimethylphenoxy) acetate; (2-methylphenoxy)acetyl chloride; Ph (4-chlorophenoxy)acetate; Ph (2,4-dichlorophenoxy)acetate; α-(2-propyl-4-chlorophenoxy)acetamide; α-(2,4,5-trichlorophenoxy) acetanilide; (2,4,5-trichlorophenoxy)acetonitrile; N-(2,4,5-trichlorophenoxyacetyl) bis[tris(hydroxymethyl) methylaminomethyl] carbinol hydrochloride. The following, as Group III, are compounds possessing 30-49% of the activity of I in Test A: 4-aminoazobenzene; 2-(amylamino)ethyl diphenylacetate-HCl; (2-amyl-4-chlorophenoxy)acetic acid; isoamyl (2,4-dimethylphenoxy)acetate; 2-bromoethyl (4-chlorophenoxy)acetate; (2-bromophenyl)sulfamic acid; butylamine mercuric chloride; Bu (3-methylphenoxy)acetate; cacotheline; 1-(4-carboxyphenyl-3-(3-chlorophenyl)urea; chloroacetamide; 4-chlorobenzoyl chloride; (4-chlorophenoxy)acetonitrile; 1-(4-chlorophenoxy)-2,3-epoxypropane; (4-chlorophenyl)acetic acid; N-(4-chlorophenyl)glycine; S-(4-chlorophenyl)thioglycolyl chloride; N-butyl-S-(4-chlorophenyl)thioglycolamide; [2-(cyanomethyl)-4-chlorophenoxy] acetic acid; NH4 N,N-(cyclopentamethylene)dithiocarbamate; 3,5-dibromo-2-aminobenzoic acid; 2,5-dichloroaniline mercuric chloride salt; (2,4-dichloro-5-aminophenoxy)-acetic acid; 2,4-dichlorocinnamic acid; α-(2,4-dichloro-6-methylphenoxy) acetamide; (2,4-dichloro-5-nitrophenoxy)acetic acid; (2,4-dichlorophenoxy)-N,N-bis(2-hydroxyethyl)acetamide; S-(2,5-dichlorophenyl)thioglycolic acid; 1,1-bis(1-hydroxy-2,2,2-trichloroethyl)urea; 3,4-dimethylphenol; (2,4-dimethylphenoxy)acetic acid; 3,4-isomer; (2,4-dimethylphenoxy)acetyl chloride; S-(2,4-dinitrophenyl)thioglycolic acid; N,N-bis [tris(hydroxymethyl)methyl]ethylenediamine-di-HCl; Et [2-(chloromethyl)-4-chlorophenoxy]acetate; (2-ethyl-4-chlorophenoxy)acetic acid; Et S-(4-chlorophenyl)thioglycolate; 2-hydroxy-3-carboxy-5-chlorotoluene; 4-hydroxy-3,5-dibromobenzoic acid; 2-hydroxyethyl 2,4-dichlorophenyl ether; N4-(iodoacetyl)sulfanilamide; 2-methyl-2-butylaminopropyl 4-(hexyloxy)benzoate-HCl; (2-methyl-4-chloro-6-carboxyphenoxy)acetic acid; Me(2-chlorophenoxy)acetate; 1-(2-methyl-4-chlorophenoxy)-2,3-epoxypropane; Me (2,4-dichlorophenoxy)acetate; (2-methylphenoxy)acetic acid; 4-nitrobenzoyl chloride; octyl dihydrogen orthophosphate; 2-isopropylaminoethyl 2-butoxybenzoate-HCl; Pr (2-methyl-4-chlorophenoxy)acetate; iso-Pr phenylcarbamate; Ba 3-pyridinesulfonate; sulfamerazine; 2,3,5-tribromobenzoic acid; 2,3,5-trichlorobenzoic acid; (2,2,2-trichloro-1-hydroxyethyl)urea; (2,4,6-trichlorophenoxy)acetic acid; (2,4,5-trichlorophenoxy)-2-nitroacetanilide; 2,4,6-trichlorophenyl phenylcarbamate; S-(2,4,5-trichlorophenyl)thioglycolamide; 1-[3-(trifluoromethyl)phenoxy]-2,3-epoxypropane; NH4 2,3,5-triiodobenzoate; N-[tris(hydroxymethyl)methyl]-N-{2-hydroxy-3-[tris(hydroxymethyl)methylamino]propyl}-α-(4-chlorophenoxy)acetamide-HCl. The following, as Group IV-A, are compounds showing less than 29% of the activity of I in Test A and 50% or more of the activity of I in either Test B or Test C: α-amino-β-(2,4-dichlorophenoxy)propionamide; α-amino-β-(3-nitro-4-hydroxyphenyl)propionic acid nitrate salt; aminotetrazole; aniline; (benzylsulfonyl)acetic acid; 5-bromo-2-nitrobenzoic acid; 2-bromo-3-nitrobenzoic acid; NH4 2-bromo-3-nitrobenzoate; β-bromopropionic acid; 2-butylaminoethyl 4-butoxybenzoate-HCl; 2-isobutylaminoethyl 4-butoxybenzoate-HCl; 2-butylaminoethyl 4-ethoxybenzoate-HCl; 2-butylaminoethyl 4-methoxybenzoate-HCl; camphor oxime; N4-(carbo-2-chloroethoxy)sulfanilamide; (2-carbomethoxy-4-chlorophenoxy)acetic acid; (2-carboxy-4-chlorophenoxy)acetic acid; (2-carboxy-6-methylphenoxy)acetic acid; (2-carboxyphenoxy)acetic acid; [2-(carboxymethoxy)-3,5-dichlorobenzoyl]glycolic acid; chloroacetic acid; 2-chloroaniline; 3-chloroaniline; 4-chloroaniline; 4-chlorobenzyl mercaptan; 4-chlorobenzenesulfonyl chloride; 4-chlorobenzylisothiourea-HCl; 4-chloromandelic acid; (2-chloro-4-methylphenoxy)acetic acid; 2-chloro-3-nitrobenzoic acid; 2-chloro-5-nitrobenzoic acid; (2-chlorophenoxy)acetic acid; [2-(2-chlorophenyl)phenoxy]acetic acid; 4-chlorothiophenol; diazoaminobenzene; 2,4-dibromophenol; dichloroacetic acid; 2,4-dichloroaniline; 2,5-dichloroaniline; (2,4-dichlorobenzylsulfonyl)acetic acid; 2,4-dichlorobenzoic acid; 2,4-dichlorobenzylisothiourea-HCl; (2,4-dichloro-6-carboxyphenoxy)acetic acid; (2,6-dichloro-4-nitrophenoxy)acetic acid; 2,4-dichlorophenyl phenylcarbamate; (2,5-dichlorophenyl)sulfamic acid; 2,4-dihydroxypyrimidine; 2,4-dimethylphenol; (2,4-dinitrophenyl)acetic acid; N,N’-bis[tris(hydroxymethyl)methyl] hexamethylenediamine-di-HCl; 3-ethoxy-2-naphthoic acid; 2-ethylaminobutyl 4-ethoxybenzoate-HCl; Et carbamate; Et β-methyl-β-(4-chlorophenyl)glycidate; 3-ethyl-4-methylpyridine; Et (2-propyl-4-chlorophenoxy)acetate; (2-fluorophenoxy)acetic acid; 2-hydroxy-3-bromo-5-chlorobenzoic acid; 2-hydroxy-3-methyl-5-nitrobenzoic acid; N-(2-hydroxy-3-chloropropyl)-p-toluidine; 2-hydroxy-3,5-dinitrobenzoic acid; 4-iodobenzoic acid; 2-methoxyphenol; 4-methoxyphenol; 2-methyl-2-amylaminopropyl diphenylacetate-HCl; 2-methyl-5-chlorophenol; 2-methyl-6-chlorophenol; (2-methyl-4-chlorophenoxy)fumaric acid; Me 3-chlorophenylcarbamate; 2-methyl-4,6-dichlorophenol; 2-methyl-2-hexylaminopropyl 4-ethoxybenzoate-HCl; Me (2-methyl-6-chlorophenoxy)acetate; (4-methylphenoxy)acetic acid; Me phenylthiocarbamate; S-(2-methylphenyl)thioglycolic acid; 4-methyl-4-(trichloromethyl)-2,5-cyclohexadien-1-one O-carboxymethyloxime; 2-nitrobutyl phenylcarbamate; 1-phenyl-3-methyl-5-pyrazole; phthalic acid; α-pinene; 2-isopropylaminoethyl 4-butoxybenzoate-HCl; (2-propyl-4-chlorophenoxy)acetic acid; iso-Pr (2,4-dimethylphenoxy)acetate; iso-Pr (2-methyl-6-chlorophenoxy)acetate; 3-propyl-2-naphthoic acid; iso-Pr (2-propyl-4-chlorophenoxyacetate); trichloroacetamide; trichloroacetic acid; trichloroacetyl chloride; 2,4,5-trichlorobenzenesulfonamide; 3,4,5-trihydroxybenzoic acid; N-[tris(hydroxymethyl)methyl]-2,3-dibromopropylamine-HBr; salicylic acid. The following, as Group IV-B, are compounds insufficiently soluble in water for Test A to be performed but exhibiting 50% or more of the activity of I in either Test B or Test C: allyl (4-chlorophenoxy)acetate; allyl (2,4-dichlorophenoxy)acetate; 2-aminonaphthoic acid; amyl (2,4-dichlorophenoxy)acetate; isoamyl (2,4-dichlorophenoxy)acetate; amyl 1-naphthalenecarbamate; bis-(4-chlorophenyl)(trichloromethyl)methane; 1,1′-(bis-2-naphthol)phenylmethane; 2-bromo-3,5-dichlorobenzamide; 2-bromo-3,5-dichlorobenzanilide; 2,2′-dibromo-3,5-dichlorobenzanilide; 2,3′-dibromo-3,5-dichlorobenzanilide; 2,4′-dibromo-3,5-dichlorobenzanilide; 2-bromo-3,3′,5-trichlorobenzanilide; 2-bromo-2′,3,4′,5-tetrachlorobenzanilide; 2-bromo-3,5-dichloro-m-benzotoluidide; 2-bromo-3,5-dichlorobenzoyl chloride; 2-bromoethyl (2,4-dibromophenoxy) acetate; 2-bromoethyl (2,4-dichlorophenoxy) acetate; α-(4-bromophenoxy)acetamide; 1-(3-bromophenyl)-3-(2-chlorophenyl)urea; 1-(3-bromophenyl)-3-(3-chlorophenyl)urea; Bu (2,4-dichlorophenoxy)acetate; iso-Bu (2,4-dichlorophenoxy)acetate; 1-carbethoxy-3-(3-chlorophenyl)urea; 2-chloroethyl (4-chlorophenoxy)acetate; 2-chloroethyl (2,4-dibromophenoxy)acetate; 2-chloroethyl (2,4-dichlorophenoxy)acetate; 2-chloroethyl (2-methyl-4-chlorophenoxy)acetate; 2-chloroethyl 1-naphthalenecarbamate; 2-chloroethyl phenylcarbamate; α-(4-chlorophenoxy)-p-acetanisidide; α-(4-chlorophenoxy)-2-bromoacetanilide; α-(4-chlorophenoxy)-3-bromoacetanilide; α-(4-chlorophenoxy)-4-bromoacetanilide; α-(4-chlorophenoxy)-2-chloroacetanilide; α-(4-chlorophenoxy)-3-chloroacetanilide; α-(4-chlorophenoxy)-2,4-dimethylacetanilide; α-(4-chlorophenoxy)-4-ethoxyacetanilide; 1-(4-chlorophenoxyacetyl)-2-phenylhydrazine; α-(4-chlorophenoxy)-4-iodoacetanilide; α-(4-chlorophenoxy)-3-nitroacetanilide; α-(4-chlorophenoxy)-p-acetotoluidide; α-(4-chlorophenoxy)-N-p-xenylacetamide; γ-(4-chlorophenoxy)butyronitrile; 4-chlorophenyl (4-chlorophenoxy)acetate; 1-(4-chlorophenyl)-3-(2-chlorophenyl) urea; 4-chlorophenyl (2,4-dichlorophenoxy)acetate; 1-(3-chlorophenyl)-3,3-(cyclopentamethylene)urea; 1-(3-chlorophenyl-3-phenylurea; S-(4-chlorophenyl)-2-bromothioglycolanilide; S-(4-chlorophenyl)-3-bromothioglycolanilide; 4-chlorophenyl (2,4,5-trichlorophenoxy)acetate; 2,6-dibromobenzoquinone-4-chloroimide; 2,4-dichlorobenzylsulfonyl chloride; 1,3-bis(4-chlorophenoxyacetamido)benzene; 1,4-isomer; 4,4′-bis(4-chlorophenoxyacetamido)biphenyl; 2,4-bis(4-chlorophenoxyacetamido)toluene; α-(2,4-dichlorophenoxy)acetanilide; α-(2,4-dichlorophenoxy)-N-(2-aminoethyl)acetamide; α-(2,4-dichlorophenoxy)-p-acetanisidide; α-(2,4-dichlorophenoxy-2,5-dichloroacetanilide; α-(2,4-dichlorophenoxy)-2,4-dimethylacetanilide; 1-(2,4-dichlorophenoxyacetyl)-2-(2,4-dinitrophenyl)hydrazine; (2,4-dichlorophenoxy)acetic hydrazide; α-(2,4-dichlorophenoxy)aceto-2-naphthalide; α-(2,4-dichlorophenoxy)-p-acetotoluidide; α-(2,4-dichlorophenoxy)-N-o-xenylacetamide; 4-(2,4-dichlorophenoxyacetamido)azobenzene; (2,4-dichlorophenoxy)acetylaminoguanidine; (2,4-dichlorophenoxy)acetyl bromide; α-(2,4-dichlorophenoxy)-N-(hydroxy-tert-butyl)acetamide; S-(2,4-dichlorophenoxyacetyl)isothiourea; 1-(2,4-dichlorophenoxyacetyl)-2-methyl-2-thioisourea; γ-(2,4-dichlorophenoxy)butyric acid; γ,-(2,4-dichlorophenoxy)butyronitrile; 2,4-dichlorophenyl (4-chlorophenoxy)acetate; 2,4-dichlorophenyl (2,4-dichlorophenoxy)acetate; 1-(2,5-dichlorophenyl)-3-phenylurea; S-(2,5-dichlorophenyl)thioglycolamide; 4,4′-bis(2,4-dichlorophenoxyacetamido)biphenyl; 1,4-bis (2,4-dimethylphenoxyacetamido)benzene; 2,4-bis(2,4-dimethylphenoxyacetamido)toluene; 2,4-dichlorophenyl (2,4,5-trichlorophenoxy)acetate; 2,4-dichlorophenyl (4-chlorophenoxy)acetate; 2,3-dichloropropyl (2,4-dibromophenoxy)acetate; 2,3-dichloropropyl (2,4-dichlorophenoxy)acetate; 2-diethylaminoethyl 2,3,5-triiodobenzoate; 3,3′-dimethyl-4,4′-bis(4-chlorophenoxyacetamido)biphenyl; 3,3′-dimethyl-4,4′-bis(2-methylphenoxyacetamido)biphenyl; 1,3-bis(2-methylphenoxyacetamido)benzene; 1,4-isomer; 4,4′-bis(2-methylphenoxyacetamido)biphenyl; 4,4′-bis(2,4-dimethylphenoxyacetamido)biphenyl; 1-(4-ethoxyphenyl)-3-phenylurea; Et 2-bromo-3,5-dichlorobenzoate; Et (4-bromophenoxy)acetate; Et (4-chlorophenoxy)acetate; 2-ethylhexyl (2,4-dichlorophenoxy)acetate; methallyl (4-chlorophenoxy)acetate; 2-methoxy-4-methylphenyl 1-naphthalenecarbamate; Me 2-bromo-3-nitrobenzoate; 4-(2-methyl-4-chlorophenoxyacetamido)azobenzene; α-(2-methyl-6-chlorophenoxy)-2,5-dichloroacetanilide; 2-methyl-4-chlorophenyl (2,4-dichlorophenoxy)acetate; 1-methyl-2,4-bis(2,4-dichlorophenoxyacetamido)benzene; Me 4-nitrophenylcarbamate; Me (2,4,5-trichlorophenoxy)acetate; (2-hydroxy-1-naphthyl)-1-piperidylphenylmethane; 2-nitrobutyl (2,4,5-trichlorophenoxy)acetate; 4-nitro-N,N-dimethylaniline; octyl (2,4-dichlorophenoxy)acetate; pentachlorophenyl (2,4,5-trichlorophenoxy)acetate; 1-phenyl-3,3-cyclopentamethyleneurea; Ph phenylcarbamate; Ph (2,4,5-trichlorophenoxy)acetate; iso-Pr (2,4-dichlorophenoxy)acetate; 3-isopropoxy-2-naphthoic acid; 1,3-di-m-tolyl-urea; (2,4,5-tribromo-3,5-dimethylphenoxy)acetic acid; 2,4,6-tribromophenyl acetate; 2,4,5-trichlorobenzamide; trichloroethyl (2,4-dibromophenoxy)acetate; 2,2,2-trichloroethyl (2,4-dichlorophenoxy)acetate; 2,4,5-trichlorophenoxyacetic acid; 2-(2,4,5-trichlorophenoxyacetamido)anthraquinone; α-(2,4,5-trichlorophenoxy)-4-bromoacetanilide; α-(2,4,5-trichlorophenoxy)-4-methoxyacetanilide; (2,4,5-trichlorophenoxy)aceto-2-naphthalide; α-(2,4,6-trichlorophenoxy)-4-sulfoacetonaphthalide; α-(2,4,5-trichlorophenoxy)-m-acetotoluidide; (2,4,5-trichlorophenoxy)acetyl chloride; 1-(2,4,5-trichlorophenoxyacetyl)-2-(p-nitrophenyl)hydrazine; 2,4,6-trichlorophenyl (4-chlorophenoxy)acetate; 2,4,6-trichlorophenyl (2,4-dichlorophenoxy)acetate; 2,4,6-trichlorophenyl (2,4,5-trichlorophenoxy)acetate; N-[3-(trifluoromethyl)phenyl]-α-(4-chlorophenoxy)acetamide; N-[3-(trifluoromethyl)phenyl]-α-(2,4,5-trichlorophenoxy)acetamide; 2,3,5-triiodobenzoic acid; 2,3,5-triiodobenzoyl chloride; 1-[tris(hydroxymethyl)methylamino]-2,4-dinitrobenzene; N-(p-xenyl)-α-(2,4-dichlorophenoxy)acetamide. The following, as Group IV-C, were also examined by the three tests and showed relatively low activity as compared with I: 2-acetoxyethyl 1-naphthalenecarbamate; 2-acetoxyethyl phenylcarbamate; (2-acetyl-4-chlorophenoxy)acetic acid; (2-allyl-4-chlorophenoxy)acetic acid; allyl 1-naphthalenecarbamate; allyl phenylcarbamate; allyl 4-tolyl sulfone; 1-aminoanthraquinone; 2-isomer; 4-aminobenzyl tris(hydroxymethyl)methylamine-di-HCl; 2-amino-3,5-dichlorobenzoic acid; 2-aminoethylsulfuric acid; 8-amino-1-naphthol-3,6-disulfonic acid; 1-amino-2-naphthol-4-sulfonic acid; 4-aminophenol; (2-aminophenoxy)acetic acid; (4-aminophenyl)acetic acid; 2-aminopyridine; 2-aminothiazole; 2-amylaminoethyl 4-butoxybenzoate-HCl; isoamyl formate; amyl (2-methylphenoxy)acetate; isoamyl 1-naphthalenecarbamate; 4-tert-amylphenol; amyl phenylcarbamate; isoamyl phenylcarbamate; (4-arsonophenoxy)acetic acid; benzoic acid; 4-benzylaminophenol-HCl; benzyl Bu sulfone; allyl (benzylsulfonyl)acetate; Me (benzylsulfonyl)acetate; N-benzyl-N,N’-bis[tris(hydroxymethyl)methyl]-2-hydroxy-1,3-diaminopropane; benzyl Et sulfone; benzyl Me sulfone; benzyl 4-tolyl sulfone; benzyl[tris(hydroxymethyl)methyl]amine; 1,3-bis{ [tris(hydroxymethyl)methyl]amino}-2-propanol-HCl; 2-bromobenzamide; 2-bromobenzanilide; 2-bromo-2′,4′-dichlorobenzanilide; 2-bromobenzoic acid; 3-isomer; NH4 4-bromobenzoate; 4-bromobenzonitrile; (2-bromo-4-tert-butylphenoxy)acetic acid; 2-bromo-3,5-dichloro-N-butylbenzamide; 2-bromo-3,4′,5-trichlorobenzanilide; 2-bromoethylamine; 2-bromoethyl 4-ethoxythiolbenzoate; 2-bromoethyl (2-methyl-4-chlorophenoxy)acetate; 2-bromo-4-nitrobenzoic acid; 2-bromo-5-nitrobenzoic acid; NH4 2-bromo-5-nitrobenzoate; 3-bromo-4-nitrobenzoic acid; 3-bromo-5-nitrobenzoic acid; 4-bromophenol; (2-bromophenoxy)acetic acid; α-(4-bromophenoxy)-4-bromoacetanilide; α-(4-bromophenoxy)-4-chloroacetanilide; α-(4-bromophenoxy)-2,5-dichloroacetanilide; 3-bromophenylammonium fluoroborate; 4-bromophenylammonium fluoroborate; 1-(2-bromophenyl)-3-(2-chlorophenyl)urea; 1-(4-bromophenyl)-3-(3-chlorophenyl)urea; 1-(2-bromophenyl)-3-(3-chlorophenyl)urea; N-(4-bromophenyl)-3-(2-chlorophenyl)urea; NH4 (4-bromophenyl)dithiocarbamate; 4-bromophenyl 1-naphthalenecarbamate; (2-bromo-4-phenylphenoxy)acetic acid; 4-bromophenyl phenylcarbamate; 1-(2-bromophenyl)-3-phenylurea; 1-(3-bromophenyl)-3-phenylurea; 1-(4-bromophenyl)-3-phenylurea; 3-bromophenylsulfamic acid; N-(3-bromophenyl) α,α,α-trichloroacetamide; 2-butylaminoethyl 2-butoxybenzoate-HCl; 2-butylaminoethyl diphenylacetate-HCl; 2-butylaminoethyl 4-(heptyloxy)benzoate-HCl; 2-butylaminoethyl 4-propoxybenzoate-HCl; 2-butylaminoethyl 2-(thiobutoxy)benzoate; (2-sec-butyl-4-chlorophenoxy)acetic acid; Hg butyldithiocarbamate; Bu 1-naphthalenecarbamate; iso-Bu 1-naphthalenecarbamate; 4-tert-butylphenol; Bu phenylcarbamate; iso-Bu phenylcarbamate; tert-Bu phenylcarbamate; 1-butyl-3-phenylthiourea; N-butyl-α-(2,4,5-trichlorophenoxy)acetamide; 4-carbethoxy-6-methoxyquinoline; 1-carbethoxy-3-phenylurea; 1-carbobutoxyethyl 1-naphthalenecarbamate; 1-carboisopropoxyethyl 1-naphthalenecarbamate; O-(2-carboxymethoxybenzoyl)glycolic acid; O-(2-carboxymethoxy-3-methyl-5-chlorobenzoyl)glycolic acid; NH4 (carboxymethyl)dithiocarbamate; Na (4-carboxymethylphenyl)dithiocarbamate; 2-carboxy-6-methylphenyl phenylcarbamate; NH4 (4-carboxyphenyl)dithiocarbamate; 4-carboxyphenylglycine; o-carboxyphenyl 1-naphthalenecarbamate; 1-(4-carboxyphenyl)-3-(1-naphthyl)urea; 4-carboxyphenyl phenylcarbamate; S-(4-carboxyphenyl)thioglycolic acid; N4-(β-carboxypropionyl)sulfanilamide; pyrocatechol; chloroacetyl chloride; 4-chloroanisole; 2-chlorobenzaldehyde O-carboxymethyloxime; 2-chlorobenzaldehyde oxime; 4-chlorobenzamide; 4-chlorobenzenesulfonamide; 4-chlorobenzoic acid; bis(4-chlorobenzyl)disulfide; S-(4-chlorobenzyl)thioglycolic acid; bis(4-chlorobenzyl)sulfide; (4-chlorobenzylsulfonyl)acetic acid; 4-chlorocinnamic acid; highly chlorinated 1,5-dihydroxynaphthalene; 2-chloroethyl (2-propyl-4-chlorophenoxy)acetate; chlorohydroquinone; chlorohydroquinone-O,O-diacetic acid; 4-(chloromercuri)phenol; [4-(chloromercuri)phenoxy]acetic acid; [2-(chloromethyl)-4-chlorophenoxy]acetic acid; 2-chloro-4-methyl-6-methoxyquinoline; 2-chloro-4-methylquinoline; (7-chloro-1-naphthoxy)acetic acid; 1-chloronaphthylacetic acid mixture; 4-chlorophenetole; 1-(4-chlorophenoxyacetamido)naphthalene; 2-(4-chlorophenoxyacetamido)naphthalene; α-(4-chlorophenoxy)-2,5-dichloroacetanilide; α-(4-chlorophenoxy)-N,N-diethyl-acetamide; (4-chlorophenoxy)acetic piperidide; α-(4-chlorophenoxy)-2-nitroacetanilide; α-(4-chlorophenoxy)-2,4,6-trichloroacetanilide; (4-chlorophenoxy)(4-chlorophenyl)acetic acid; (4-chlorophenoxy)fumaric acid; 2-(4-chlorophenoxy)heptanoic acid; β-(4-chlorophenoxy)propionic acid; β-(4-chlorophenoxy)propionitrile; 4-chlorophenylammonium fluoroborate; 1-(2-chlorophenyl)-3-butylurea; 1-(3-chlorophenyl)-3-butylurea; 1-(2-chlorophenyl)-1-(4-carboxyphenyl)urea; N-(3-chlorophenyl)-α-chloroacetamide; 4-isomer; 1-(3-chlorophenyl)-3-(2-chlorophenyl) urea; 1-(4-chlorophenyl)-3-(3-chlorophenyl) urea; 3-(2-chlorophenyl)-1,1-cyclopentamethyleneurea; NH4 (4-chlorophenyl)dithiocarbamate; 2-chloro-1,4-phenylene bis(phenylcarbamate); N-(2-chlorophenyl)glycine; 1-(2-chlorophenyl)-3-(2-hydroxyethyl) urea; 3-chloro isomer; 3-chlorophenyl isocyanate; 1-(2-chlorophenyl)-3-(1-naphthyl) urea; 4-isomer; [2-(4-chlorophenyl)phenoxy]acetic acid; 1-(2-chlorophenyl)-3-phenylurea; 4-chloro isomer; 1-(2-chlorophenyl)-3-phenylthiourea; 3-isomer; 4-isomer; Na (3-chlorophenyl)sulfamate; (4-chlorophenyl)sulfamic acid; S-(2-chlorophenyl)thioglycolic acid; S-(4-chlorophenyl)thioglycolamide; S-(4-chlorophenyl)thioglycolanilide; S-(4-chlorophenyl)-4′-bromothioglycolanilide; S-(4-chlorophenyl)thioglycol-p-phenetidide; S-(4-chlorophenyl)thioglycol-m-toluidine; 1-(2-chlorophenyl)urea; 3-isomer; 1,3-bis(2-chlorophenyl)urea; 3-isomer; cinnamic acid; cinnamoyl chloride; o-cresol; m-isomer; p-isomer; 4-toloxyacetyl chloride; cyanoacetamide; (2-cyclohexyl-4-chlorophenoxy)acetic acid; (decyl-mercapto)acetic acid; (decylsulfonyl)acetic acid; bis(2-acetoxyethyl) sulfone; 2,6-diaminopyridine monohydrochloride; 2,6-dibromo-4-carboxyphenyl phenylcarbamate; α,β-dibromodihydrocinnamic acid; 4,6-dibromo-1,3-dihydroxybenzene; (2,6-dibromo-4-methylphenoxy)acetic acid; 2,4-dibromophenyl phenylcarbamate; α, β-dibromo-γ-phenylpropionamide; bis(2-butyroxyethyl) sulfone; 2,5-dichloro-4-aminobenzenesulfonic acid; 2,4-dichloroanisole; 2,6-dichlorobenzenoneindophenol sodium salt; 2,5-dichlorobenzenesulfonamide; 2,5-dichlorobenzenesulfonyl chloride; (2,4-dichlorobenzylmercapto)acetic acid; bis(2,4-dichlorobenzyl)disulfide; 2,4-dichlorobenzyl mercaptan; bis(2,4-dichlorobenzyl)sulfide; bis(2,4-dichlorobenzyl)sulfone; 5,7-dichloro-3-coumaranone; N,2,4-trichloroacetanilide; 2,6-dichloro-3-ethyl-4-methylpyridine; 2,4-dichloromandelic acid; 2,6-dichloro-4-methyl-5-ethylnicotinamide; (2,6-dichloro-4-methylphenoxy)acetic acid; (2,4-dichloro-6-methylphenoxy)acetyl chloride; (2,4-dichloro-1-naphthoxy)acetic acid; 2,4-dichlorophenetole; 2,4-dichlorophenol; 1-(2,4-dichlorophenoxyacetamido)anthraquinone; 2-(2,4-dichlorophenoxyacetamido)anthraquinone; (2,6-dichlorophenoxy)acetic acid; 3,5-isomer; α-(2,4-dichlorophenoxy)-4-bromoanilide; α-(2,4-dichlorophenoxy)-4-chloroacetanilide; α-(2,4-dichlorophenoxy)-p-acetophenetide; α-(2,4-dichlorophenoxy)-N-(2-hydroxyethyl)acetamide; 2,4-dichlorophenoxyaceto-1-naphthalide; α-(2,4-dichlorophenoxy)-2-nitroacetanilide; α-(2,4-dichlorophenoxy)-3-nitroacetanilide; 1-(2,4-dichlorophenoxyacetyl)-2-(p-nitrophenyl)hydrazine; α-(2,4-dichlorophenoxy)-N-2′-pyridylacetamide; α-(2,4-dichlorophenoxy)-2,4,6-trichloroacetanilide; 2-(2,4-dichlorophenoxyacetamido)-6,8-naphthalenedisulfonic acid; 1-(2,4-dichlorophenoxyacetyl)-1-phenylsemicarbazide; (2,4-dichlorophenoxy)(p-chlorophenyl)acetic acid; 1-(2,4-dichlorophenoxy)-2,3-epoxypropane; (2,4-dichlorophenoxy) fumaric acid; Addnl. information in printed abstract The experimental part of the paper was very detailed, including the reaction process of 3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4COA of Formula: C7H4BrNO4)

3-Bromo-2-nitrobenzoic acid(cas: 116529-61-4) belongs to organobromine compounds.Most of the natural organobromine compounds are produced by marine organisms , and several brominated metabolites with antibacterial , antitumor , antiviral , and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In contrast, terrestrial plants account only for a few bromine-containing compounds.COA of Formula: C7H4BrNO4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Han, Wen-Jing’s team published research in Advanced Synthesis & Catalysis in 2017 | CAS: 76006-33-2

3-Bromo-2-methylbenzoic acid(cas: 76006-33-2) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. Application In Synthesis of 3-Bromo-2-methylbenzoic acid

《Rhodium(III)-catalyzed tandem C-H olefination and oxidative cyclization of aromatic acids with acrylates for the synthesis of (E)-3-ylidenephthalides》 was written by Han, Wen-Jing; Pu, Fan; Fan, Juan; Liu, Zhong-Wen; Shi, Xian-Ying. Application In Synthesis of 3-Bromo-2-methylbenzoic acidThis research focused onylidenephthalide regioselective diastereoselective preparation; benzoic acid acrylate rhodium catalyst tandem olefination oxidative cyclization. The article conveys some information:

Intermol. tandem C-H olefination/C-O cyclization was achieved via a rhodium (III)-catalyzed C-H activation of carboxylic acids with acrylates. Direct and efficient construction of biol. relevant (E)-3-ylidenephthalide I [R = 4-Me, 4-Me-5-MeO, 4-Me-6-Cl, etc.; R1 = Me, Et, t-Bu, n-Bu] scaffolds with satisfactory to good yields was synthesized and characterized by stoichiometric reactants, exclusive stereoselectivity, com. available substrates, mild atm. conditions and short reaction time (less than 2 h). The experimental part of the paper was very detailed, including the reaction process of 3-Bromo-2-methylbenzoic acid(cas: 76006-33-2Application In Synthesis of 3-Bromo-2-methylbenzoic acid)

3-Bromo-2-methylbenzoic acid(cas: 76006-33-2) belongs to organobromine compounds.Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. Application In Synthesis of 3-Bromo-2-methylbenzoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mohammadiannejad, Kazem’s team published research in Comptes Rendus Chimie in 2020 | CAS: 6630-33-7

o-Bromobenzaldehyde(cas: 6630-33-7) is used in L-threonine aldolase-catalyzed enantio/diastereoselective aldol reactions.Recommanded Product: o-BromobenzaldehydeIt is also used in L-threonine aldolase-catalyzed enantio and diastereoselective aldol reactions. Further, it reacts with trichloromethane to prepare 1-(2-bromo-phenyl)-2,2,2-trichloro-ethanol.

《Synthesis of new functionalized triarylmethanes via Suzuki cross-coupling and Heck-type vinylation reactions》 was written by Mohammadiannejad, Kazem; Hosseini, Raziyeh; Ranjbar-Karimi, Reza. Recommanded Product: o-BromobenzaldehydeThis research focused ontriarylmethane preparation; bromoarylmethane arylboronic acid Suzuki Miyura coupling Mizoroki Heck vinylation. The article conveys some information:

A novel class of triarylmethanes (TRAMs) containing one or two biaryl moieties was synthesized efficiently through the Pd(PPh3)4-catalyzed Suzuki-Miyaura cross-coupling reaction of brominated TRAMs with arylboronic acid derivatives Author’s also demonstrate that brominated TRAMs can be efficiently functionalized via a one-pot, two-step Pd-catalyzed Heck-type process. This protocol provides convenient access to diverse vinylated TRAMs that are generally not obtained by using the common synthetic methods for TRAMs. In the experiment, the researchers used o-Bromobenzaldehyde(cas: 6630-33-7Recommanded Product: o-Bromobenzaldehyde)

o-Bromobenzaldehyde(cas: 6630-33-7) is used in L-threonine aldolase-catalyzed enantio/diastereoselective aldol reactions.Recommanded Product: o-BromobenzaldehydeIt is also used in L-threonine aldolase-catalyzed enantio and diastereoselective aldol reactions. Further, it reacts with trichloromethane to prepare 1-(2-bromo-phenyl)-2,2,2-trichloro-ethanol.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Huang, Chibao’s team published research in Australian Journal of Chemistry in 2021 | CAS: 3395-91-3

Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.HPLC of Formula: 3395-91-3

《The Synthesis of a Two-Photon Fluorescence Labelling Probe and its Immunochromatographic Strip for Rapid Diagnosis of COVID-19》 was written by Huang, Chibao; Kang, Shuai; Yu, Fuxun; Wei, Zairong. HPLC of Formula: 3395-91-3This research focused ontwo photon fluorescence labeling probe immunochromatog strip COVID19 diagnosis. The article conveys some information:

A two-photon fluorescence labeling probe (LP) was synthesized, and LP-Ag was obtained by LP labeling the N-protein antigen (Ag) of COVID-19. LP-Ag was made into an immunochromatog. strip. When a blood sample was added to the sample hole of the test card, it would move forward along the nitrocellulose (NC) film. If the sample contained IgM, the IgM bound to LP-Ag and formed an M line with the coated mouse anti-human IgM antibody, giving a pos. response to the presence of IgM of COVID-19. The sensitivity, specificity, and accuracy of the immunochromatog. strip based on the LP was compared with those of the nucleic acid detection method and the colloidal gold method, proving it to be much simpler than the nucleic acid detection method, which can greatly shorten the detection period, and to be much more stable than the colloidal gold method, which can overcome uncertainty. LP-Ag can be used to image lung tissue with COVID-19 by two-photon fluorescence microscopy (TFM). In the experimental materials used by the author, we found Methyl 3-bromopropanoate(cas: 3395-91-3HPLC of Formula: 3395-91-3)

Methyl 3-bromopropanoate(cas: 3395-91-3) belongs to bromides. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.HPLC of Formula: 3395-91-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary