Sarki, Naina team published research in ChemCatChem in 2021 | 6911-87-1

Synthetic Route of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 6911-87-1, formula is C7H8BrN, Name is 4-Bromo-N-methylaniline. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Synthetic Route of 6911-87-1.

Sarki, Naina;Goyal, Vishakha;Tyagi, Nitin Kumar;Puttaswamy;Narani, Anand;Ray, Anjan;Natte, Kishore research published 《 Simple RuCl3-catalyzed N-Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol》, the research content is summarized as follows. Methanol is a potential hydrogen source and C1 synthon, which finds interesting applications in both chem. synthesis and energy technologies. The effective utilization of this simple alc. in organic synthesis is of central importance and attracts scientific interest. Herein, a clean and cost-competitive method with the use of methanol as both C1 synthon and H2 source for selective N-methylation of amines by employing relatively cheap RuCl3.xH2O as a ligand-free catalyst. This readily available catalyst tolerates various amines comprising electron-deficient and electron-donating groups and allows them to transform into corresponding N-methylated products in moderate to excellent yields. In addition, few marketed pharmaceutical agents (e.g., venlafaxine and imipramine) were also successfully synthesized via late-stage functionalization from readily available feedstock chems., highlighting synthetic value of this advanced N-methylation reaction. Using this platform, also attempted tandem reactions with selected nitroarenes to convert them into corresponding N-methylated amines using MeOH under H2-free conditions including transfer hydrogenation of nitroarenes-to-anilines and prepared drug mols. (e.g., benzocaine and butamben) as well as key pharmaceutical intermediates. Further enable one-shot selective and green syntheses of 1-methylbenzimidazole using ortho-phenylenediamine (OPDA) and methanol as coupling partners.

Synthetic Route of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sargazi, Saman team published research in Bioorganic Chemistry in 2021 | 629-04-9

629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., Product Details of C7H15Br

Organic compounds having carbon bonded to bromine are called organic bromides. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Product Details of C7H15Br.

Sargazi, Saman;Shahraki, Sheida;Shahraki, Omolbanin;Zargari, Farshid;Sheervalilou, Roghayeh;Maghsoudi, Saeid;Soltani Rad, Mohammad Navid;Saravani, Ramin research published 《 8-Alkylmercaptocaffeine derivatives: antioxidant, molecular docking, and in-vitro cytotoxicity studies》, the research content is summarized as follows. Due to their unique pharmacol. characteristics, methylxanthines are known as therapeutic agents in a fascinating range of medicinal scopes. In this report, we aimed to examine some biol. effects of previously synthesized 8-alkylmercaptocaffeine derivatives Cytotoxic and antioxidative activity of 8-alkylmercaptocaffeine derivatives were measured in malignant A549, MCF7, and C152 cell lines. Assessment of cGMP levels and caspase-3 activity were carried out using a colorimetric competitive ELISA kit. Computational approaches were employed to discover the inhibitory mechanism of synthesized compounds Among the twelve synthesized derivatives, three compounds (C1, C5, and C7) bearing Pr, heptyl, and 3-methyl-Bu moieties showed higher and more desirable cytotoxic activity against all the studied cell lines (IC50 < 100μM). Furthermore, C5 synergistically enhanced cisplatin-induced cytotoxicity in MCF-7 cells (CI < 1). Both C5 and C7 significantly increased caspase-3 activity and intracellular cGMP levels at specific time intervals in all studied cell lines (P < 0.05). However, these derivatives did not elevate LDH leakage (P > 0.05) and exhibited no marked ameliorating effects on oxidative damage (P > 0.05). Computational studies showed that H-bond formation between the nitrogen atom in pyrazolo[4,3-D] pyrimidine moiety with Gln817 and creating a hydrophobic cavity result in the stability of the alkyl group in the PDE5A active site. We found that synthesized 8-alkylmercaptocaffeine derivatives induced cell death in different cancer cells through the cGMP pathway. These findings will help us to get a deeper insight into the role of methylxanthines as useful alternatives to conventional cancer therapeutics.

629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., Product Details of C7H15Br

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sanghavi, Kartik N. team published research in Polycyclic Aromatic Compounds in | 70-23-5

70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., Reference of 70-23-5

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 70-23-5, formula is C5H7BrO3, Name is Ethyl 3-bromo-2-oxopropanoate. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Reference of 70-23-5.

Sanghavi, Kartik N.;Dhuda, Gautam Kumar;Kapadiya, Khushal M. research published 《 Facile Microwave Synthesis of Pd-Catalyzed Suzuki Reaction for Bis-6-Aryl Imidazo[1,2-a]Pyridine-2-Carboxamide Derivatives with PEG3 Linker》, the research content is summarized as follows. An efficient and facile synthetic procedure has been developed for the synthesis of novel series of Bis-6-aryl-imidazo[1,2-a]pyridine-2-carboxamide containing 3,3′-((oxybis(ethane-2,1-diyl))bis(oxy))bis(propan-1-amine) derivatives An application of the Palladium catalyzed Suzuki reaction on amine-(CH2)3-PEG3-(CH2)3-amine linked 6-bromo imidazo[1,2-a]pyridine-2-carboxamide was reported and their products are discussed. The reaction was optimized through numerous catalytic conditions for this strategy, and it was fixed with the best approach having advantages of less reaction time, higher degree of yield, most consumption of starting material, and selection of best catalyst for the success of the reaction. The ideal spectroscopic characterization (PMR, CMR, IR and MS) have been utilized for the finalization of the synthesized adducts.

70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., Reference of 70-23-5

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sang, Dayong team published research in Journal of Organic Chemistry in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Name: 3-Bromobenzoic acid

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 585-76-2, formula is C7H5BrO2, The most pervasive is the naturally produced bromomethane. Name: 3-Bromobenzoic acid

Sang, Dayong;Yue, Huaxin;Fu, Yang;Tian, Juan research published 《 Cleavage of Carboxylic Esters by Aluminum and Iodine》, the research content is summarized as follows. A one-pot procedure for deprotecting carboxylic esters such as ArC(O)OR [Ar = Ph, 2-HOC6H4, 4-BrC6H4, etc.; R = Me, Bn, iPr, t-But] using aluminum and iodine under nonhydrolytic conditions was described. Cleavage of lactones afforded the corresponding ω-iodoalkylcarboxylic acids ICH2(CH2)nC(O)OH [n = 2, 4, 12]. Aryl acetylates undergo deacetylation with the participation of the neighboring group. This method enabled the selective cleavage of alkyl carboxylic esters in the presence of aryl esters.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Name: 3-Bromobenzoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Saleem, Faiza team published research in Bioorganic Chemistry in 2021 | 5392-10-9

Quality Control of 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Quality Control of 5392-10-9.

Saleem, Faiza;Kanwal;Khan, Khalid Mohammed;Chigurupati, Sridevi;Solangi, Mehwish;Nemala, Appala Raju;Mushtaq, Maria;Ul-Haq, Zaheer;Taha, Muhammad;Perveen, Shahnaz research published 《 Synthesis of azachalcones, their α-amylase, α-glucosidase inhibitory activities, kinetics, and molecular docking studies》, the research content is summarized as follows. Diabetes being a chronic metabolic disorder have attracted the attention of medicinal chemists and biologists. The introduction of new and potential drug candidates for the cure and treatment of diabetes has become a major concern due to its increased prevalence worldwide. In the current study, twenty-seven azachalcone derivatives were synthesized and evaluated for their antihyperglycemic activities by inhibiting α-amylase and α-glucosidase enzymes. Five compounds I (IC50 = 23.08 ± 0.03μM), (IC50 = 26.08 ± 0.43μM), II (IC50 = 24.57 ± 0.07μM), (IC50 = 27.57 ± 0.07μM), III (IC50 = 24.94 ± 0.12μM), (IC50 = 27.13 ± 0.08μM), IV (IC50 = 27.57 ± 0.07μM), (IC50 = 29.13 ± 0.18μM), and V (IC50 = 26.94 ± 0.12μM) (IC50 = 27.99 ± 0.09μM) demonstrated good inhibitory activities against α-amylase and α-glucosidase enzymes, resp. Acarbose was used as the standard in this study. Structure-activity relationship was established by considering the parent skeleton and different substitutions on aryl ring. The compounds were also subjected for kinetic studies to study their mechanism of action and they showed competitive mode of inhibition against both enzymes. The mol. docking studies have supported the results and showed that these compounds have been involved in various binding interactions within the active site of enzyme.

Quality Control of 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sakamoto, Seiji team published research in ACS Central Science in 2019 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Synthetic Route of 4897-84-1

Organic compounds having carbon bonded to bromine are called organic bromides. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Synthetic Route of 4897-84-1.

Sakamoto, Seiji;Yamaura, Kei;Numata, Tomohiro;Harada, Fumio;Amaike, Kazuma;Inoue, Ryuji;Kiyonaka, Shigeki;Hamachi, Itaru research published 《 Construction of a Fluorescent Screening System of Allosteric Modulators for the GABAA Receptor Using a Turn-On Probe》, the research content is summarized as follows. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The fast inhibitory actions of GABA are mainly mediated by GABAA receptors (GABAARs), which are widely recognized as clin. relevant drug targets. However, it remains difficult to create screening systems for drug candidates that act on GABAARs because of the existence of multiple ligand-binding sites and the delicate pentameric structures of GABAARs. We here developed the first turn-on fluorescent imaging probe for GABAARs, which can be used to quant. evaluate ligand-receptor interactions under live cell conditions. Using noncovalent labeling of GABAARs with this turn-on probe, a new imaging-based ligand assay system, which allows discovery of pos. allosteric modulators (PAMs) for the GABAAR, was successfully constructed. Our system is applicable to high-throughput ligand screening, and we discovered new small mols. that function as PAMs for GABAARs. These results highlight the power of the use of a turn-on fluorescent probe to screen drugs for complicated membrane proteins that cannot be addressed by conventional methods.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Synthetic Route of 4897-84-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Saint-Jacques, Kevin team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 402-49-3

Application of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application of C8H6BrF3.

Saint-Jacques, Kevin;Ladd, Carolyn L.;Charette, Andre B. research published 《 Access to hexahydroazepinone heterocycles via palladium-catalysed C(sp3)-H alkenylation/ring-opening of cyclopropanes》, the research content is summarized as follows. Synthesis of novel hexahydroazepinone derivatives I [R = H, 8-tert-Bu, 8-Ph, etc.; R1 = Me, Bn, 2-BrC6H4CH2, etc.; n = 1,2,3] starting from N-cyclopropyl-N-methylcycloalkene-carboxamides in presence of a readily available palladium catalyst was repored. The reaction proceeded through a selective C(sp3)-H alkenylation/ring-opening process to obtain the seven-membered ring products I in good to excellent yields on a wide variety of substrates under batch, microwave and continuous flow conditions.

Application of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Saini, Parul team published research in Asian Journal of Organic Chemistry in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Related Products of 402-49-3

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Related Products of 402-49-3.

Saini, Parul;Krishnan, Anandhu;Yadav, Deepak;Hazra, Susanta;Elias, Anil J. research published 《 External Catalyst-Free Oxidation of Benzyl Halides to Benzoic Acids Using NaOH/TBHP in Water》, the research content is summarized as follows. An efficient and metal-free methodol. for the oxidation of benzyl halides to benzoic acids using an inexpensive and green oxidant (TBHP) in aqueous basic medium has been developed. This protocol offers an excellent way to avoid adding catalysts and involves the use of an in-situ generated halide ion as catalyst. It is also the first report on the oxidation of benzyl iodides to benzoic acids. A series of carboxylic acids were prepared from benzyl halides in high yields under mild reaction conditions by this method which does not require chromatog. purification Gram scale reactions for the synthesis of the carboxylic acids in good yields have been successfully carried out using benzyl chloride, bromide and iodide. As an industrial application, the synthesis of a key monomer used for the synthesis of polyethylene terephthalate (PET), i. e., terephthalic acid (PTA), has also been accomplished in good yields.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Related Products of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sahana, Tuhin team published research in Angewandte Chemie, International Edition in 2021 | 20469-65-2

Reference of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 20469-65-2.

Sahana, Tuhin;Mondal, Aditesh;Anju, Balakrishnan S.;Kundu, Subrata research published 《 Metal-free Transformations of Nitrogen-Oxyanions to Ammonia via Oxoammonium Salt》, the research content is summarized as follows. Transformations of nitrogen-oxyanions (NOx) to ammonia impart pivotal roles in sustainable biogeochem. processes. While metal-mediated reductions of NOx are relatively well known, this report illustrates proton-assisted transformations of NOx anions in the presence of electron-rich aromatics such as 1,3,5-trimethoxybenzene (TMB-H, 1 a) leading to the formation of diaryl oxoammonium salt [(TMB)2N+=O][NO3] (2 a) via the intermediacy of nitrosonium cation (NO+). Detailed characterizations including UV/Vis, multinuclear NMR, FT-IR, HRMS, X-ray analyses on a set of closely related metastable diaryl oxoammonium [Ar2N+=O] species disclose unambiguous structural and spectroscopic signatures. Oxoammonium salt 2 a exhibits 2 e oxidative reactivity in the presence of oxidizable substrates such as benzylamine, thiol, and ferrocene. Intriguingly, reaction of 2 a with water affords ammonia. Perhaps of broader significance, this work reveals a new metal-free route germane to the conversion of NOx to NH3.

Reference of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Saha, Pabitra team published research in ACS Macro Letters in 2020 | 5445-17-0

Synthetic Route of 5445-17-0, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 5445-17-0, formula is C4H7BrO2, Name is Methyl 2-bromopropanoate. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Synthetic Route of 5445-17-0.

Saha, Pabitra;Santi, Marta;Frenken, Martin;Palanisamy, Anand Raj;Ganguly, Ritabrata;Singha, Nikhil K.;Pich, Andrij research published 《 Dual-Temperature-Responsive Microgels from a Zwitterionic Functional Graft Copolymer with Superior Protein Repelling Property》, the research content is summarized as follows. In this work, we developed a synthetic strategy to synthesize dual-temperature-responsive low surface fouling zwitterionic microgels. Statistical poly(N-vinylcaprolactam-co-glycidyl methacrylate) copolymers were synthesized by RAFT polymerization and post-modified by thiol-epoxy click reaction with thiol end-group-modified poly(sulfobetaine) macro-RAFT (PSB-SH) to obtain poly(N-vinylcaprolactam-co-glycidyl methacrylate)-graft-poly(sulfobetaine) (PVCL-co-PGMA-g-PSB) graft copolymers. Synthesized graft copolymers were crosslinked by diamine crosslinker in water-in-oil (w/o) inverse mini-emulsion to obtain zwitterionic microgels. Using this approach, we synthesized microgels with unique microstructure, high loading and uniform distribution of poly(sulfobetaine) chains, which exhibits tunable dual-volume phase transition temperatures The microgels also showed excellent antifouling property reflected in strongly reduced protein absorption on a microgel-coated surface observed in real time by a Quartz Crystal Microbalance with Dissipation (QCM-D) monitoring experiment with continuous flow of protein solution Therefore, this kind of zwitterionic microgel can be potentially used for temperature-triggered drug delivery and anti-bioadhesion coating material as well.

Synthetic Route of 5445-17-0, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary