Qneibi, Mohammad team published research in Molecular Neurobiology in | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Safety of 3-Bromobenzoic acid

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Safety of 3-Bromobenzoic acid

Qneibi, Mohammad;Hawash, Mohammad;Jaradat, Nidal;Bdir, Sosana research published 《 Affecting AMPA Receptor Biophysical Gating Properties with Negative Allosteric Modulators》, the research content is summarized as follows. Glutamatergic chem. synapses mediate excitatory neurotransmission by the ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors in the central nervous system (CNS). AMPA receptor-mediated synaptic transmission abnormalities may play a role in neurol. and neurodegenerative diseases, and compounds that can modulate AMPA receptor (AMPAR) signaling have been studied for decades as possible therapies for Alzheimer′s disease, Parkinson′s disease, depression, and epilepsy. Here, we aimed to determine the modulating effect of allosteric regulators on AMPA receptors by comparing their actions on AMPA-evoked currents, desensitization, and deactivation rate in human embryonic kidney cells (HEK293T) recombinant AMPAR subunits. In this study, patch-clamp electrophysiol. was performed to examine how the AMPA subunit responded to benzodioxole (BDZ) derivatives Our results showed that the BDZ derivatives affected AMPARs as neg. modulators, particularly BDZs (8, 9, and 15), where they increased the desensitization rate and delayed the deactivation process. The BDZ compounds were utilized in this study as AMPA modulators to investigate fundamental and clin. AMPA receptor processes. We test BDZs as neg. allosteric AMPAR modulators to reestablish glutamatergic synaptic transmission. These efforts have resulted in important mols. with neuroprotective properties on AMPA receptors.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Safety of 3-Bromobenzoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qiu, Zijie team published research in Journal of the American Chemical Society in 2020 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Quality Control of 244205-40-1

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Quality Control of 244205-40-1.

Qiu, Zijie;Asako, Sobi;Hu, Yunbin;Ju, Cheng-Wei;Liu, Thomas;Rondin, Loic;Schollmeyer, Dieter;Lauret, Jean-Sebastien;Muellen, Klaus;Narita, Akimitsu research published 《 Negatively Curved Nanographene with Heptagonal and [5]Helicene Units》, the research content is summarized as follows. Neg. curved nanographene (NG) 4, having two heptagons and a [5]helicene, was unexpectedly obtained by aryl rearrangement and stepwise cyclodehydrogenations. X-ray crystallog. confirmed the saddle-shaped structures of intermediate 3 and NG 4. The favorability of rearrangement over helicene formation following radical cation or arenium cation mechanisms is supported by theor. calculations NG 4 demonstrates a reversible mechanochromic color change and solid-state emission, presumably benefiting from its loose crystal packing. After resolution by chiral high-performance liquid chromatog., the CD spectra of enantiomers 4-(P) and 4-(M) were measured and showed moderate Cotton effects at 350 nm (|Δε| = 148 M-1 cm-1).

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Quality Control of 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qiu, Xinkai team published research in Advanced Materials (Weinheim, Germany) in 2021 | 629-04-9

Recommanded Product: 1-Bromoheptane, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane, Recommanded Product: 1-Bromoheptane

Qiu, Xinkai;Rousseva, Sylvia;Ye, Gang;Hummelen, Jan C.;Chiechi, Ryan C. research published 《 In Operando Modulation of Rectification in Molecular Tunneling Junctions Comprising Reconfigurable Molecular Self-Assemblies》, the research content is summarized as follows. The reconfiguration of mol. tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chem. packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on mol. tunneling junctions comprising self-assembled monolayers and bilayers.

Recommanded Product: 1-Bromoheptane, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qiu, Xiaqiu team published research in European Journal of Medicinal Chemistry in 2021 | 4224-70-8

4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., Application In Synthesis of 4224-70-8

Organic compounds having carbon bonded to bromine are called organic bromides. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Application In Synthesis of 4224-70-8.

Qiu, Xiaqiu;Li, Yuanqing;Yu, Bin;Ren, Jie;Huang, Huidan;Wang, Min;Ding, Hong;Li, Zhiyu;Wang, Jubo;Bian, Jinlei research published 《 Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion》, the research content is summarized as follows. Cyclin-dependent kinase 9 (CDK9) is an increasingly important potential cancer treatment target. Nowadays, developing selective CDK9 inhibitors has been extremely challenging as its ATP-binding sites are similar with other CDKs. Here, we report that the CDK9 inhibitor BAY-1143572 is converted into a series of proteolysis targeting chimeras (PROTACs) which leads to several compounds inducing the degradation of CDK9 in acute myeloid leukemia cells at a low nanomolar concentration In addition, the most potent PROTAC mol. could inhibit cell growth more effectively than warhead alone, with little inhibition of other kinases. This enhanced antiproliferative activity is mediated by a slight increase in kinase inhibitory activity and an increase in the level of apoptosis induction. Moreover, the most potent PROTAC mol. could induce the degradation of CDK9 in vivo. Our work provides evidence that the most potent PROTAC mol. represents a lead for further development and that CDK9 degradation is a potential valuable therapeutic strategy in acute myeloid leukemia.

4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., Application In Synthesis of 4224-70-8

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qiu, Xiang team published research in Journal of Hazardous Materials in 2021 | 2576-47-8

Reference of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Organic compounds having carbon bonded to bromine are called organic bromides. Reference of 2576-47-8.

Qiu, Xiang;Wang, Shushu;Miao, Shanshan;Suo, Hongbo;Xu, Huajin;Hu, Yi research published 《 Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal》, the research content is summarized as follows. This work aims to achieve the co-immobilization of laccase and 2,2-binamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) to improve removal capability of the biocatalyst for pollutants while avoiding potential pollution caused by ABTS. The laccase was immobilized on magnetic chitosan nanoparticles modified with amino-functionalized ionic liquid containing ABTS (MACS-NIL) based on Cu ion chelation (MACS-NIL-Cu-lac). The carrier was characterized by Fourier transform IR spectroscopy, thermogravimetric anal., x-ray diffraction and etc., and ESR confirmed the mediator mol. ABTS on the carrier could also play the role of electron transmission. MACS-NIL-Cu-lac presented relatively high immobilization capacity, enhanced activity (1.7-fold that of free laccase), improved pH and temperature adaptability, and increased thermal and storage stability. The removal performance assay found that MACS-NIL-Cu-lac had a good removal efficiency with 100.0 % for 2,4-dichlorophenol in water at 25 °C, even when the concentration reached 50 mg/L. Reusability study showed that after six catalytic runs, the removal efficiency of 2,4-dichlorophenol by MACS-NIL-Cu-lac could still reach 93.2 %. Addnl., MACS-NIL-Cu-lac exhibited higher catalytic efficiencies with 100.0 %, 70.5 % and 93.3 % for bisphenol A, indole, and anthracene, resp. The high catalytic performance in pure water system obtained by the novel biocatalyst co-immobilizing laccase and electron mediator ABTS showed greater practical application value.

Reference of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qiu, Shaotong team published research in Chemical Science in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Computed Properties of 823-78-9

Organic compounds having carbon bonded to bromine are called organic bromides. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Computed Properties of 823-78-9.

Qiu, Shaotong;Gao, Xiang;Zhu, Shifa research published 《 Dirhodium(II)-catalysed cycloisomerization of azaenyne: rapid assembly of centrally and axially chiral isoindazole frameworks》, the research content is summarized as follows. A dirhodium(II)-catalyzed asym. cycloisomerization reaction of azaenynes through a cap-tether synergistic modulation strategy, which represents the first catalytic asym. cycloisomerization of azaenynes. This reaction is highly challenging because of its inherent strong background reaction leading to racemate formation and the high capability of coordination of the nitrogen atom resulting in catalyst deactivation. Varieties of centrally chiral isoindazole derivatives was prepared in up to 99 : 1 d.r., 99 : 1 er and 99% yield and diverse enantiomerically enriched atropisomers bearing two five-membered heteroaryls was accessed by using an oxidative central-to-axial chirality transfer strategy. The tethered nitrogen atom incorporated into the starting materials enabled easy late-modifications of the centrally and axially chiral products via C-H functionalizations, which further demonstrated the appealing synthetic utilities of this powerful asym. cyclization.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Computed Properties of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qin, Xing team published research in Nature Communications in 2021 | 5445-17-0

5445-17-0, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., Application In Synthesis of 5445-17-0

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 5445-17-0, formula is C4H7BrO2, Name is Methyl 2-bromopropanoate, Application In Synthesis of 5445-17-0

Qin, Xing;Wu, Chu;Niu, Dechao;Qin, Limei;Wang, Xia;Wang, Qigang;Li, Yongsheng research published 《 Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy》, the research content is summarized as follows. Peroxisome, a special cytoplasmic organelle, possesses one or more kinds of oxidases for hydrogen peroxide (H2O2) production and catalase for H2O2 degradation, which serves as an intracellular H2O2 regulator to degrade toxic peroxides to water. Inspired by this biochem. pathway, we demonstrate the reactive oxygen species (ROS) induced tumor therapy by integrating lactate oxidase (LOx) and catalase (CAT) into Fe3O4 nanoparticle/indocyanine green (ICG) co-loaded hybrid nanogels (designated as FIGs-LC). Based on the O2 redistribution and H2O2 activation by cascading LOx and CAT catalytic metabolic regulation, hydroxyl radical (·OH) and singlet oxygen (1O2) production can be modulated for glutathione (GSH)-activated chemodynamic therapy (CDT) and NIR-triggered photodynamic therapy (PDT), by manipulating the ratio of LOx and CAT to catalyze endogenous lactate to produce H2O2 and further cascade decomposing H2O2 into O2. The regulation reactions of FIGs-LC significantly elevate the intracellular ROS level and cause fatal damage to cancer cells inducing the effective inhibition of tumor growth. Such enzyme complex loaded hybrid nanogel present potential for biomedical ROS regulation, especially for the tumors with different redox state, size, and s.c. depth.

5445-17-0, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., Application In Synthesis of 5445-17-0

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qin, Hengfei team published research in ACS Omega in 2021 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Category: bromides-buliding-blocks

Organic compounds having carbon bonded to bromine are called organic bromides. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Category: bromides-buliding-blocks.

Qin, Hengfei;Li, Yan;Dong, Ruoyu;Yuan, Jiafeng;Zhou, Yue;Hu, Yaxin;Jia, Hailang;Bai, Jirong;Gong, Jie;Jiang, Jinlong;Zhou, Quanfa research published 《 An Efficient Catalyst Derived from Carboxylated Lignin-Anchored Iron Nanoparticle Compounds for Carbon Monoxide Hydrogenation Application》, the research content is summarized as follows. Catalytic activity and target product selectivity are strongly correlated to the size, crystallog. phase, and morphol. of nanoparticles. In this study, waste lignin from paper pulp industry is employed as the carbon source, which is modified with carboxyl groups at the mol. level to facilitate anchoring of metals, and a new type of carbon-based catalyst was obtained after carbonization. As a result, the size of the metal particles is effectively controlled by the chelation between -COO and Fe3+. Furthermore, Fe/CM-CL with a particle size of 1.5-2.5 nm shows excellent catalytic performance, the conversion of carbon monoxide reaches 82.3%, and the selectivity of methane reaches 73.2%.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qi, Liangliang team published research in Chinese Chemical Letters in 2022 | 629-04-9

Application In Synthesis of 629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

Organic compounds having carbon bonded to bromine are called organic bromides. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Application In Synthesis of 629-04-9.

Qi, Liangliang;Pang, Xiaobo;Yin, Kai;Pan, Qiu-Quan;Wei, Xiao-Xue;Shu, Xing-Zhong research published 《 Mn-mediated reductive C(sp3)-Si coupling of activated secondary alkyl bromides with chlorosilanes》, the research content is summarized as follows. Reductive coupling of activated secondary alkyl halides FG-CHXR1 (FG = phosphinyl, sulfonyl; R1 = Me, Et, PhCH2CH2, C6H13) with chlorosilane ClSiMe2(CH:CH2) mediated by manganese metal afforded secondary alkylsilanes FG-CH(R1)SiMe2(CH:CH2) with high yields. The construction of secondary alkylsilanes is a challenging subject in the synthetic community. The cross-coupling provides a practical solution to address this problem, but it typically relies on organometallic species. Herein, we report an Mn-mediated reductive C(sp3)-Si coupling to synthesize these compounds from alkyl and silyl electrophiles. This approach avoids the requirement for activation of Si-Cl by transition metals and thus allows for the coupling of various common chlorosilanes. The reaction proceeds under mild conditions and shows good functional group compatibility. The method offers access to α-silylated organophosphorus and sulfones with a scope that is complementary to those obtained from the established methods.

Application In Synthesis of 629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Qhobosheane, Malikotsi A. team published research in Chemico-Biological Interactions in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., COA of Formula: C7H6Br2

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. COA of Formula: C7H6Br2.

Qhobosheane, Malikotsi A.;Beteck, Richard M.;Baratte, Blandine;Robert, Thomas;Ruchaud, Sandrine;Bach, Stephane;Legoabe, Lesetja J. research published 《 Exploration of 7-azaindole-coumaranone hybrids and their analogues as protein kinase inhibitors》, the research content is summarized as follows. 7-Azaindole has been labeled a privileged scaffold for the design of new potent inhibitors of protein kinases. In this paper, we determined the inhibition profiles of novel mono- and disubstituted derivatives of 7-azaindole-coumaranone hybrids on various disease-related protein kinases. Eight hit compounds were identified, including a potent Haspin inhibitor with an IC50 value of 0.15 μM. An interesting observation was that all active monosubstituted compounds displayed dual inhibition for Haspin and GSK-3β, while disubstituted derivatives inhibited GSK-3β and LmCK1 from Leishmania major parasite. Analyses of structure activity relationships (SARs) also revealed that mono-substitution with para-fluorobenzyloxy ring produced an equipotent inhibition of Haspin and GSK-3β. Haspin and GSK-3β are relevant targets for developing new anticancer agents while LmCK1 is an innovative target for leishmanicidal drugs. Novel compounds reported in this paper constitute promising starting points for the development of new anticancer and leishmanicidal drugs.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., COA of Formula: C7H6Br2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary