Nienaltowski, Tomasz team published research in Chemistry – A European Journal in 2020 | 2576-47-8

2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., Application of C2H7Br2N

Organic compounds having carbon bonded to bromine are called organic bromides. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Application of C2H7Br2N.

Nienaltowski, Tomasz;Szczepanik, Pawel;Malecki, Pawel;Czajkowska-Szczykowska, Dorota;Czarnocki, Stefan;Pawlowska, Jolanta;Kajetanowicz, Anna;Grela, Karol research published 《 Large-Scale Synthesis of a Niche Olefin Metathesis Catalyst Bearing an Unsymmetrical N-Heterocyclic Carbene (NHC) Ligand and its Application in a Green Pharmaceutical Context》, the research content is summarized as follows. A large-scale synthesis of known Ru olefin metathesis catalyst I featuring an unsym. N-heterocyclic carbene (NHC) ligand with one 2,5-diisopropylphenyl (DIPP) and one thiophenylmethylene N-substituent is reported. The optimized procedure does not require column chromatog. in any step and allows for preparation of up to 0.5 kg batches of the catalyst from simple precursors. The application profile of the obtained catalyst was studied in environmentally friendly di-Me carbonate (DMC). Although I exhibited low efficiency in cross-metathesis (CM) with electron-deficient partners, good to excellent results were noted for substrates featuring easy to isomerize C-C double bonds. This includes polyfunctional substrates of medicinal chem. interest, such as analogs of psychoactive 5F-PB-22 and NM-2201 and two PDE5 inhibitors-sildenafil and vardenafil. Finally, a larger scale ring-closing metathesis (RCM) of a vardenafil derivative was conducted in DMC, allowing for straightforward isolation of the expected product (23 g) in high yield and with low Ru contamination level (7.7 ppm).

2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., Application of C2H7Br2N

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nie, Xiao-Di team published research in Journal of Organic Chemistry in 2021 | 6911-87-1

6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., Product Details of C7H8BrN

Organic compounds having carbon bonded to bromine are called organic bromides. 6911-87-1, formula is C7H8BrN, Name is 4-Bromo-N-methylaniline. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Product Details of C7H8BrN.

Nie, Xiao-Di;Han, Xiao-Li;Sun, Jian-Ting;Si, Chang-Mei;Wei, Bang-Guo;Lin, Guo-Qiang research published 《 Nickel-Catalyzed Regioselective Hydroamination of Ynamides with Secondary Amines》, the research content is summarized as follows. The first Ni(OTf)2-catalyzed hydroamination of ynamides e.g., N-benzyl-4-methyl-N-(2-phenylethynyl)benzene-1-sulfonamide was developed by reacting with secondary amines e.g., N-methylaniline. This protocol features excellent regioselectivity, a broad substrate scope of secondary aryl amines, and good functional group tolerance for ynamides. Using this method, a variety of substituted ethene-1,1-diamine compounds e.g., I were prepared in moderate to excellent yields with high regioselectivities.

6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., Product Details of C7H8BrN

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nie, Shenyou team published research in European Journal of Medicinal Chemistry in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Computed Properties of 1575-37-7

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Computed Properties of 1575-37-7.

Nie, Shenyou;Zhao, Jidong;Wu, Xiaowei;Yao, Yuan;Wu, Fangrui;Lin, Yi-Lun;Li, Xin;Kneubehl, Alexander R.;Vogt, Megan B.;Rico-Hesse, Rebecca;Song, Yongcheng research published 《 Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease》, the research content is summarized as follows. Zika virus belongs to the Flavivirus family of RNA viruses, which include other important human pathogens such as dengue and West Nile virus. There are no approved antiviral drugs for these viruses. The highly conserved NS2B-NS3 protease of Flavivirus is essential for the replication of these viruses and it is therefore a drug target. Compound screen followed by medicinal chem. optimization yielded a novel series of 2,6-disubstituted indole compounds that are potent inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 320 nM. The structure-activity relationships of these and related compounds are discussed. Enzyme kinetics studies show the inhibitor 66 most likely exhibited a non-competitive mode of inhibition. In addition, this series of ZVpro inhibitors also inhibit the NS2B-NS3 protease of dengue and West Nile virus with reduced potencies. The most potent compounds 66 and 67 strongly inhibited Zika virus replication in cells with EC68 values of 1-3 μM. These compounds are novel pharmacol. leads for further drug development targeting Zika virus.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Computed Properties of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nie, Fang-Yuan team published research in Journal of Organic Chemistry in 2022 | 4224-70-8

Name: 6-Bromohexanoic acid, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid, Name: 6-Bromohexanoic acid

Nie, Fang-Yuan;Cai, Yi-Ping;Song, Qin-Hua research published 《 Visible Light-Driven Decarboxylative Alkylation of Aldehydes via Electron Donor-Acceptor Complexes of Active Esters》, the research content is summarized as follows. In this paper, authors have developed photocatalyst-free and visible light-driven decarboxylative alkylation of pyridinaldehydes. The photochem. reactions are initiated via photoinduced single electron transfer from triethylamine to N-hydroxyphthalimide esters in electron donor-acceptor complexes. This photochem. method can achieve to translate 15 pyridinaldehydes and 11 2-quinolinaldehydes to the corresponding ketones. Furthermore, this strategy can also achieve two other transformations, disulfanes to aryl sulfides and a styrene sulfone to the alkyl-substituted alkene.

Name: 6-Bromohexanoic acid, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ni, Wei-Wei team published research in Medicinal Chemistry (Sharjah, United Arab Emirates) in 2021 | 585-76-2

Quality Control of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Quality Control of 585-76-2.

Ni, Wei-Wei;Fang, Hai-Lian;Ye, Ya-Xi;Li, Wei-Yi;Liu, Li;Fu, Zi-Juan;Dawalamu;Zhu, Wen-Yan;Li, Ke;Li, Fang;Zou, Xia;Ouyang, Hui;Xiao, Zhu-Ping;Zhu, Hai-Liang research published 《 Synthesis and Structure-Activity Relationship Studies of N-monosubstituted Aroylthioureas as Urease Inhibitors》, the research content is summarized as follows. Thiourea is a classical urease inhibitor which is usually used as a pos. control, and many N,N′-disubstituted thioureas have been determined as urease inhibitors. However, due to steric hindrance, N,N′-disubstituted thiourea motif could not bind urease as thiourea. On the contrary, N-monosubstituted thiourea with a tiny thiourea motif could theor. bind into the active pocket as thiourea. A series of N-monosubstituted aroylthioureas were designed and synthesized for evaluation as urease inhibitors. Urease inhibition was determined by the indophenol method and IC50 values were calculated using computerized linear regression anal. of quantal log dose-probit functions. The kinetic parameters were estimated via surface plasmon resonance (SPR) and by nonlinear regression anal. based on the mixed type inhibition model derived from Michaelis-Menten kinetics. Compounds b2, b11, and b19 reversibly inhibited urease with a mixed mechanism, and showed excellent potency against both cell-free urease and urease in the intact cell, with IC50 values being 90- to 450-fold and 5- to 50-fold lower than the pos. control acetohydroxamic acid, resp. The most potent compound b11 showed an IC50 value of 0.060 ± 0.004μM against cell-free urease, which bound to urea binding site with a very low KD value (0.420±0.003nM) and a very long residence time (6.7 min). Compound b11 was also demonstrated to have very low cytotoxicity to mammalian cells. The results revealed that N-monosubstituted aroylthioureas bound to the active site of urease as expected, and represent a new class of urease inhibitors for the development of potential therapeutics against infections caused by urease-containing pathogens.

Quality Control of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ngcobo, Makhosonke team published research in New Journal of Chemistry in 2022 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Safety of 3,5-Dibromo-2-hydroxybenzaldehyde

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Organic compounds having carbon bonded to bromine are called organic bromides. Safety of 3,5-Dibromo-2-hydroxybenzaldehyde.

Ngcobo, Makhosonke;Nose, Holliness;Jayamani, Arumugam;Ojwach, Stephen O. research published 《 Structural and ethylene oligomerization studies of chelating (imino)phenol Fe(II), Co(II) and Ni(II) complexes: an experimental and theoretical approach》, the research content is summarized as follows. The metal complexes [Fe(L1)2] (Fe1); [Fe(L2)2] (Fe2); [Fe(L3)2] (Fe3); [Co(L1)2] (Co1); [Co(L2)2] (Co2); [Co(L3)3] (Co3); [Ni(L1)2] (Ni1); [Ni(L2)2] (Ni2) and [Ni(L3)3] (Ni3); where L = 2,4-dibromo-6-((pyridin-2-ylimino)methyl)phenol (L1H), 2,4-dibromo-6-(((4-methylpyridin-2-yl)imino)methyl)phenol (L2H) and 2,4-dibromo-6-((quinolin-8-ylimino)methyl)phenol (L3H), were synthesized in good yields. The complexes were characterized using IR spectroscopy, UV-visible spectroscopy, mass spectrometry, magnetic moment measurements, elemental anal., and x-ray crystallog. The mol. structures of complexes Fe3a (oxidized form of Fe3) and Ni3 confirmed the isolation of bis(chelated) tridentate bound octahedral compounds Activation of the complexes with the EtAlCl2 co-catalyst produced active catalysts in the ethylene oligomerization reactions to afford mainly C4 and C6 oligomers. The catalytic activities and product distribution were largely controlled by the nature of the ligand and the metal atom. D. functional theory calculations were used to study the influence of complex properties and global descriptors in the ethylene oligomerization reactions. The stability and magnitude of the charge of the metal atom appear to drive the overall catalytic activities of the complexes.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Safety of 3,5-Dibromo-2-hydroxybenzaldehyde

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nechaev, Anton A. team published research in Organic & Biomolecular Chemistry in 2021 | 244205-40-1

Name: (2-Bromophenyl)boronic acid, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Name: (2-Bromophenyl)boronic acid.

Nechaev, Anton A.;Jagtap, Pratap R.;Bazikova, Ema;Neumannova, Johana;Cisarova, Ivana;Matousova, Eliska research published 《 Synthesis of fused 1,2-naphthoquinones with cytotoxic activity using a one-pot three-step reaction》, the research content is summarized as follows. A method for the synthesis of fused 1,2-naphthoquinones, as analogs of biol. active natural terpene quinones, was described. The intermediate polycyclic naphthalenes were prepared by a one-pot palladium-catalyzed process from simple alkynes, one of which was made from an optically pure biomass-derived levoglucosenone. The prepared methoxy-substituted naphthalenes were subsequently transformed in one step to 1,2-naphthoquinones by a trivalent-iodine-mediated oxidation The naphthoquinone products were found to have cytotoxic properties.

Name: (2-Bromophenyl)boronic acid, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ndima, Lubabalo team published research in Zeitschrift fuer Kristallographie – New Crystal Structures in 2021 | 4224-70-8

Electric Literature of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid, Electric Literature of 4224-70-8

Ndima, Lubabalo;Hosten, Eric C.;Betz, Richard research published 《 The crystal structure of 6-bromohexanoic acid, C6H11BrO2》, the research content is summarized as follows. C6H11BrO2, monoclinic, P21/n (number 14), a = 10.6730(14) Å, b = 5.2781(6) Å, c = 14.7781(18) Å, β = 109.610(4)°, V = 784.21(17) Å3, Z = 4, Rgt(F) = 0.0225, wRref(F2) = 0.0564, T = 200(2) K.

Electric Literature of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Naz, Fouzia team published research in Bioorganic Chemistry in 2020 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Product Details of C9H9BrO3

Organic compounds having carbon bonded to bromine are called organic bromides. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Product Details of C9H9BrO3.

Naz, Fouzia;Kanwal;Latif, Mehreen;Salar, Uzma;Khan, Khalid Mohammed;al-Rashida, Mariya;Ali, Irfan;Ali, Basharat;Taha, Muhammad;Perveen, Shahnaz research published 《 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors》, the research content is summarized as follows. The N’-benzylidene-2-((2-oxo-2H-chromen-4-yl)oxy)acetohydrazide Schiff base derivatives (E,Z)-I (R = 4-OH, benzyloxidanyl, 3,5-dimethoxy, etc.) were synthesized by following a three step reaction strategy. All mols. were assessed for urease inhibitory activity and found to possess a varying degree of inhibitory potential in the range of IC50 = 12.3 ± 0.69 to 88.8 ± 0.04μM. Amongst the active analogs, compounds (E,Z)-I (R = 3-OH) (IC50 = 16.2 ± 0.11μM), (E,Z)-I (R = benzyloxidanyl) (IC50 = 15.2 ± 0.14μM), (E,Z)-I (R = 2,3,4-trimethoxy) (IC50 = 12.3 ± 0.69μM), (E,Z)-I (R = 3,5-dimethoxy) (IC50 = 16.3 ± 0.45μM), and (E,Z)-I (R = 2-OMe) (IC50 = 17.6 ± 0.28μM) were identified as potent inhibitors compared to standard urea (IC50 = 21.5 ± 0.47μM). It is conferred from structure-activity relationship (SAR) that variation in inhibitory activity is due to different substitutions pattern on aryl ring. Moreover, mol. docking studies were carried out to understand the interactions of ligand with the active pocket of urease enzyme.

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Product Details of C9H9BrO3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Nayek, Nayana team published research in New Journal of Chemistry in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Quality Control of 1575-37-7

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Quality Control of 1575-37-7.

Nayek, Nayana;Karmakar, Pintu;Mandal, Mullicka;Karmakar, Indrajit;Brahmachari, Goutam research published 《 Photochemical and electrochemical regioselective cross-dehydrogenative C(sp2)-H sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols》, the research content is summarized as follows. A dual synthetic strategy based on visible-light (white LEDs/direct sunlight) irradiation and electrosynthesis has been explored for the regioselective cross-dehydrogenative C(sp2)-H sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols in an oxygen atm. under mild reaction conditions. The photochem. process does not require any external photoredox catalysts. Photocatalytic application of in situ generated deprotonated species of benzo[a]phenazin-5-ol mols. has also been accomplished. This is the first report on the synthesis of functionalized phenazine derivatives

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Quality Control of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary