Malik, Asif A. team published research in ChemistrySelect in 2020 | 823-78-9

Category: bromides-buliding-blocks, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Category: bromides-buliding-blocks.

Malik, Asif A.;Dangroo, Nisar A.;Ara, Tabassum research published 《 Microwave-Assisted Tandem Kornblum Oxidation and Biginelli Reaction for the Synthesis of Dihydropyrimidones》, the research content is summarized as follows. A simple and straightforward approach for the synthesis of dihydropyrimidones I (X = O, S; Ar = Ph, 4-FC6H4, pyridin-2-yl, 1H-pyrrol-2-yl, etc.) via sequential Kornblum oxidation/Biginelli reaction has been developed. The protocol involves an in situ oxidation of benzyl bromides ArCH2Br which serve as a carbonyl equivalent followed by cyclocondensation with (thio)urea and Et acetoacetate to furnish dihydropyrimidones I under catalyst- and base-free conditions in a one-pot tandem manner under microwave irradiation Further, the product purification using aqueous recrystallization avoids large quantities of volatile and a toxic organic solvent usually required for work-up and significantly less time required for this process makes the method environmentally friendly.

Category: bromides-buliding-blocks, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Malasala, Satyaveni team published research in European Journal of Medicinal Chemistry in 2021 | 1575-37-7

Name: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Name: 4-Bromobenzene-1,2-diamine.

Malasala, Satyaveni;Ahmad, Naiyaz Md;Akunuri, Ravikumar;Shukla, Manjulika;Kaul, Grace;Dasgupta, Arunava;Madhavi, Y. V.;Chopra, Sidharth;Nanduri, Srinivas research published 《 Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis》, the research content is summarized as follows. In the current study, fifteen new Quinazoline-benzimidazole hybrids I (R = H, 4-nitro, 4-chloro, 4-fluoro, 4-bromo; R1 = Ph, 3,4-dimethoxyphenyl, 4-chlorophenyl), II (R2 = trifluoromethyl, 4-bromo-2-florophenyl, 8-chloroquinolin-3-yl, naphthalen-2-yl) and III were designed, synthesized, and evaluated for their antimicrobial activity against S. aureus ATCC 29213 and M. tuberculosis H37Rv. These studies led to the identification of nine compounds potent antibacterial agents I (R = 4-nitro, R1 = Ph; R = 4-chloro, R1 = Ph; R = H, R1 = Ph; R = 4-fluoro, R1 = Ph; R = 4-nitro, R1 = 3,4-dimethoxyphenyl; R = 4-chloro, R1 = 3,4-dimethoxyphenyl; R = H, R1 = 4-chlorophenyl; R = 4-fluoro, R1 = 4-chlorophenyl) and II (R2 = 8-chloroquinolin-3-yl) with MICs in the range of 4-64μg/mL. Further, these selected compounds were found to possess potent antibacterial potential against a panel of drug-resistant clin. isolates which include methicillin and vancomycin-resistant S. aureus. The selected compounds were found to be less toxic to Vero cells (CC50 = 40-≥200μg/mL) and demonstrated a favorable selectivity index. Based on the encouraging results obtained these new benzimidazol-2-yl quinazoline derivatives I have emerged as promising antimicrobial agents for the treatment of MDR- S. aureus and Mycobacterial infections.

Name: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Majumder, Mitali team published research in Journal of Organometallic Chemistry in 2022 | 90-59-5

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Formula: C7H4Br2O2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Formula: C7H4Br2O2.

Majumder, Mitali;Das, Tapashi;Sepay, Nayim;Rajak, Kajal Krishna research published 《 A study of DNA/BSA interaction and catalytic potential of oxidovanadium(V, IV) complexes incorporating dibenzofuran based ON̂Ô ligand》, the research content is summarized as follows. The tridentate Schiff base ligand H2L1, [(Z)-3-((2-hydroxybenzylidene)amino)dibenzo [b,d]furan-2-ol], synthesized by the typical condensation reaction of [3-aminodibenzo[b,d]furan-2-ol] with salicylaldehyde was used in the present work towards the synthesis of mononuclear oxidovanadium complexes. Three mononuclear oxidovanadium complexes [VOL1(OMe)], 1; [VO(L1)(8-Hq)], 2 and [VO(L1)(1,10-phen)], 3 were successfully synthesized with high yield using [VO(acac)2]. 8-Hydroxyquinoline and 1,10-phenanthroline were used as co-ligands in the synthesis of complexes 2 and 3. X-ray crystallog. studies revealed that the ligand H2L1 binds in tridentate fashion. The synthesized complexes were well characterized by using different spectroscopic techniques. The physiochem. properties were well interpreted by d. functional theory (DFT) and time dependent d. functional theory (TDDFT) calculations DNA/BSA interaction study was performed using UV-visible spectroscopy, Fluorescence spectroscopy, CD, viscometer measurements, FRET and Mol. docking study. The complexes bind with DNA through intercalation resulting in shortening of DNA length. Among all the complexes, complex 3 shows the strongest binding ability with DNA and the binding constant (Kb) is 6.2 x 105 M-1. In contrast Complex 2 showed highest binding affinity with the BSA protein (KBSA = 3.7 x 106 M-1). Moreover the energy transfer between BSA and the complexes are feasible in a static quenching interaction. They were also proven to show bromoperoxidase activity with high conversion rate and enhanced selectivity.

90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., Formula: C7H4Br2O2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Majoinen, Johanna team published research in ACS Macro Letters in 2022 | 4224-70-8

4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., Application of C6H11BrO2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application of C6H11BrO2.

Majoinen, Johanna;Bouilhac, Cecile;Rannou, Patrice;Borsali, Redouane research published 《 Unidirectional Perpendicularly Aligned Lamella-Structured Oligosaccharide (A) ABA Triblock Elastomer (B) Thin Films Utilizing Triazolium+/TFSI Ionic Nanochannels》, the research content is summarized as follows. We designed and synthesized high χ-low N maltoheptaose-(triazolium+/N(SO2CF3)2)-polyisoprene-(triazolium+/N(SO2CF3)2)-maltoheptaose ABA triblock elastomers featuring triazolium+/N(SO2CF3)2 (TFSI) counteranion ionic interfaces separating their constituting polymeric sub-blocks. Spin-coated and solvent vapor annealed (SVA) MH1.2k-(T+/TFSI)-PI4.3k-(T+/TFSI)-MH1.2k thin films demonstrate interface-induced charge cohesion through ca. 1 nm “thick” ionic nanochannels which facilitate the self-assembly of a perpendicularly aligned lamellar structure. Atomic force microscopy (AFM) and (grazing-incidence) small-angle X-ray scattering ((GI)SAXS) characterizations of MH1.2k-(T+/TFSI)-PI4.3k-(T+/TFSI)-MH1.2k and pristine triBCP analogous thin films revealed sub-10 nm block copolymer (BCP) self-assembly and unidirectionally aligned nanostructures developing over several μm2 areas. Solvated TFSI counterions enhance the oligosaccharide sub-block packing during SVA. The overall BCP phase behavior was mapped through (GI)SAXS characterizations comparing di vs. triblock polymeric architectures, middle PI sub-block with two different mol. masses, and TFSI or I counteranion effects. This work highlights the benefits of inducing single-point electrostatic interactions within chem. structures of block copolymers to master the long-range self-assembly of prescribed morphologies.

4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., Application of C6H11BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Maity, Ribhu team published research in Journal of Physical Chemistry B in 2021 | 90-59-5

HPLC of Formula: 90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. HPLC of Formula: 90-59-5.

Maity, Ribhu;Sepay, Nayim;Pramanik, Ushasi;Jana, Kalyanmoy;Mukherjee, Saptarshi;Maity, Swapan;Mal, Dasarath;Maity, Tithi;Samanta, Bidhan Chandra research published 《 Exploring the Noncovalent Interactions of the Dinuclear Cu(II) Schiff Base Complex with Bovine Serum Albumin and Cell Viability against the SiHa Cancer Cell Line》, the research content is summarized as follows. A dinuclear bis(μ-acetate) dicopper(II) complex [Cu2L21.1-CH3COO)2] was synthesized from a tridentate NNO Schiff Base ligand L (L = 2,4-dibromo-6-((3-(methylamino)propylimino)methyl)phenol) and characterized by elemental, UV-visible, FTIR, 1H NMR, and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic studies. The single-crystal x-ray structure, different noncovalent interactions, Hirshfeld surface anal., and d. functional theory (DFT) studies of the dinuclear complex were determined by crystallog. computational studies. The structural study exposed that the complex consists of the pentacoordinated double μ1.1-acetato-bridged dinuclear units of Cu(II), and it is a centrosym. dimer in which the center of inversion lies at the midpoint of two Cu(II) ions. Hirshfeld surface and DFT studies pointed out the probable potentiality of the crystal in prospective binding with the protein. This was exptl. verified by carrying out the binding interaction studies against bovine serum albumin (BSA) protein using various spectroscopic methods. The copper(II) complex could strongly bind to BSA and could quench the intrinsic fluorescence of BSA. Further, the studied complex was appraised for cell viability studies against SiHa cancer cells. Cell viability increases with time, demonstrating the biocompatible nature of the complex.

HPLC of Formula: 90-59-5, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Maiti, Sudip team published research in Nature Communications in 2022 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Formula: C9H9BrO3

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Formula: C9H9BrO3.

Maiti, Sudip;Li, Yingzi;Sasmal, Sheuli;Guin, Srimanta;Bhattacharya, Trisha;Lahiri, Goutam Kumar;Paton, Robert S.;Maiti, Debabrata research published 《 Expanding chemical space by para-C-H arylation of arenes》, the research content is summarized as follows. A robust catalytic system that displayed unique efficacy toward para-arylation of highly functionalized substrates such as drug entities, giving access to structurally diversified biaryl scaffolds, e.g., I was developed. This diversification process provided access to an expanded chem. space for further exploration in drug discovery. Further, the applicability of the transformation was realized through the synthesis of drug mols. bearing a biphenyl fragment. Computational and exptl. mechanistic studies further provided insight into the catalytic cycle operative in this versatile C-H arylation protocol.

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Formula: C9H9BrO3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Maiti, Debabrata team published research in Organic Letters in 2021 | 5392-10-9

Synthetic Route of 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde, Synthetic Route of 5392-10-9

Maiti, Debabrata;Mahanty, Kingshuk;De Sarkar, Suman research published 《 Manganese-Catalyzed Electrochemical Tandem Azidation-Coarctate Reaction: Easy Access to 2-Azo-benzonitriles》, the research content is summarized as follows. A one-pot cascade transformation consisting of an electrochem. driven azidation of 2H-indazole followed by coarctate fragmentation was developed to synthesize the 2-azo-benzonitrile motif I [R1 = t-bu, Ph, 4-pyridyl, etc.; R2 = H, 3-F, 4-F, 4-Cl, 4,5-di-MeO]. This manganese-catalyzed transformation was external-chem.-oxidant-free and operates at ambient temperature under air. This methodol. exhibited good functional group tolerance, afforded a broad range of substrate scopes of up to 89% isolated yield. Diverse derivatization of the 2-azo-benzonitrile product resulted in other valuable scaffolds.

Synthetic Route of 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mahadik, Suraj S. team published research in Journal of Molecular Structure in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., HPLC of Formula: 1575-37-7

Organic compounds having carbon bonded to bromine are called organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. HPLC of Formula: 1575-37-7.

Mahadik, Suraj S.;Garud, Dinesh R.;Pinjari, Rahul V.;Kamble, Rajesh M. research published 《 Synthesis, optical, electrochemical and theoretical studies of 2,3-Di(pyridin-2-yl)quinoxaline amine derivatives as blue-orange emitters for organic electronics》, the research content is summarized as follows. We herein report the design and synthesis of six new donor-acceptor (D-A) type, bipolar compounds containing 2,3-di(pyridin-2-yl)quinoxaline as an acceptor and diaryl/heterocyclic amine donors prepared by palladium catalyzed Buchwald-Hartwig coupling reaction. The synthesized compounds have been characterized by different spectroscopic techniques, electrochem. anal. and thermal method. Further, the structure of compound 4 shown as I was confirmed by single crystal X-ray anal. The characteristic absorption (λmax) with ICT feature and emission maxima (λemm) in various solvents of 2-7 are found in the range of 389-440 nm and 460-555 nm, resp., with stoke’s shift within 3664-6945 cm-1. The pos. solvatochromism due to solvent polarity observed in dyes confirmed by the Mc-Rae and Weller’s plots. The dyes 2-7 show cyan blue to orange emission (λemm = 493-581 nm) in solid film. The cyclic voltammetry (CV) was used to analyze the HOMO and LUMO energy levels of the mols. and further it was correlated by d. functional theory (DFT) calculations The excellent thermal stability and opto-electronic properties warrants the application of these dyes in opto-electronic devices.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., HPLC of Formula: 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Magre, Marc team published research in Journal of the American Chemical Society in 2021 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Related Products of 244205-40-1

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Related Products of 244205-40-1.

Magre, Marc;Cornella, Josep research published 《 Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides》, the research content is summarized as follows. A Bi-catalyzed synthesis of sulfonyl fluorides from the corresponding (hetero)aryl boronic acids is presented. Authors demonstrate that the organobismuth(III) catalysts bearing a bis-aryl sulfone ligand backbone revolve through different canonical organometallic steps within the catalytic cycle without modifying the oxidation state. All steps have been validated, including the catalytic insertion of SO2 into Bi-C bonds, leading to a structurally unique O-bound bismuth sulfinate complex. The catalytic protocol affords excellent yields for a wide range of aryl and heteroaryl boronic acids, displaying a wide functional group tolerance.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Related Products of 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Maeng, Jee Hyun team published research in Dyes and Pigments in 2021 | 1575-37-7

Computed Properties of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 1575-37-7, formula is C6H7BrN2, The most pervasive is the naturally produced bromomethane. Computed Properties of 1575-37-7

Maeng, Jee Hyun;Braveenth, Ramanaskanda;Jung, Young Hun;Hwang, Soon Jae;Lee, Hyuna;Min, Hye Li;Kim, Jun Yun;Han, Chang Wook;Kwon, Jang Hyuk research published 《 Efficiency enhancement in orange red thermally activated delayed fluorescence OLEDs by using a rigid di-indolocarbazole donor moiety》, the research content is summarized as follows. The development of orange-red thermally activated delayed fluorescence (TADF) materials with good optoelectronic and electroluminescence properties are full of challenges due to limited mol. designs. Herein, we investigated a series of materials using dimethylacridine (DMAC) and diindolocarbazole (DI) donor with dibenzo [a, c] phenazine (DBP) acceptor, and compared the characteristics of all synthesized materials as emitters. Due to lower singlet energy level, the rate constant of internal conversion (kIC) contribute to nonradiative decay cannot be ignored at the orange-red region. Therefore, employing rigid donor and acceptor moieties play a major role in suppressing kIC. We observed that employing a rigid donor of DI at β position enhanced the PLQY of 96.1% when compared to acridine based emitters. 5-(dibenzo [a, c] phenazin-11-yl)-10, 15-diphenyl-10,15-dihydro-5H-diindolo [3, 2-a:3′, 2′-c] carbazole (β-DI-DBP) based OLED device showed better current efficiency (CEmax) of 47.1 cd/A and maximum external quantum efficiency (EQE) of 23.8%. This work demonstrates a better approach towards high PLQY orange red TADF material development.

Computed Properties of 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary