Luo, Zhenli team published research in Green Chemistry in 2021 | 6911-87-1

6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., Safety of 4-Bromo-N-methylaniline

Organic compounds having carbon bonded to bromine are called organic bromides. 6911-87-1, formula is C7H8BrN, Name is 4-Bromo-N-methylaniline. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 4-Bromo-N-methylaniline.

Luo, Zhenli;Pan, Yixiao;Yao, Zhen;Yang, Ji;Zhang, Xin;Liu, Xintong;Xu, Lijin;Fan, Qing-Hua research published 《 BF3·Et2O as a metal-free catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant》, the research content is summarized as follows. A versatile metal- and base-free direct reductive amination of aldehydes with amines using formic acid as a reductant under the catalysis of inexpensive BF3·Et2O has been developed. A wide range of primary and secondary amines and diversely substituted aldehydes are compatible with this transformation, allowing facile access to various secondary and tertiary amines in high yields with wide functional group tolerance. Moreover, the method is convenient for the late-stage functionalization of bioactive compounds and preparation of commercialized drug mols. and biol. relevant N-heterocycles. The procedure has the advantages of simple operation and workup and easy scale-up, and does not require dry conditions, an inert atm. or a water scavenger. Mechanistic studies reveal the involvement of imine activation by BF3 and hydride transfer from formic acid.

6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., Safety of 4-Bromo-N-methylaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Luo, Shu-Zheng team published research in Advanced Synthesis & Catalysis in 2020 | 5445-17-0

Recommanded Product: Methyl 2-bromopropanoate, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 5445-17-0, formula is C4H7BrO2, Name is Methyl 2-bromopropanoate. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Recommanded Product: Methyl 2-bromopropanoate.

Luo, Shu-Zheng;Min, Man-Yi;Wu, Yan-Chen;Jiang, Shuai-Shuai;Xiao, Yu-Ting;Song, Ren-Jie;Li, Jin-Heng research published 《 Synthesis of Bulky 1,1-Diarylalkanes by Copper-Catalyzed 1,2-Alkylarylation of Styrenes with α-Carbonyl Alkyl Bromides and Arenes involving C-H Functionalization》, the research content is summarized as follows. A copper and silver-promoted intermol. 1,2-alkylarylation of styrenes with α-carbonyl alkyl bromides and arenes for producing highly bulky 1,1-diarylalkane derivatives I (Ar = 2,4-diOMeC6H3, 4-Me-2,6-diOMeC6H2, 2,4,6-triOMeC6H2, etc; R1 = 4-MeC6H4, 4-OEtC6H4, 4-tBuC6H4, etc; R2 = R3 = Me, F, c-Bu, etc; R4 = OMe, OEt, C6H5.) has been developed. In this transformations, two new C-C bonds were formed in a single reaction step through C-Br bond cleavage and C(sp2)-H functionalization. This protocol tolerates a variety of α-carbonyl alkyl bromides, including primary, secondary and tertiary α-bromoalkyl ketone esters.

Recommanded Product: Methyl 2-bromopropanoate, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Luo, Feihua team published research in Tetrahedron Letters in 2021 | 585-76-2

Synthetic Route of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic compounds having carbon bonded to bromine are called organic bromides. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Synthetic Route of 585-76-2.

Luo, Feihua;He, Shuhua;Gou, Quan;Chen, Jinyang;Zhang, mingzhong research published 《 Palladium-catalyzed ortho-C-H hydroxylation of benzoic acids》, the research content is summarized as follows. A simple Pd(OAc)2 catalyzed ortho-hydroxylation of benzoic acids using TBHP as the sole oxidant was explored. This protocol featured relatively broad substrate scope and operational simplicity. The compatibility of ortho-substituted substrates was an effective complement to the previous ortho-hydroxylation reaction.

Synthetic Route of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Xu team published research in Organic Letters in 2021 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Electric Literature of 20469-65-2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Electric Literature of 20469-65-2.

Lu, Xu;Kawazu, Ryohei;Song, Jizhou;Yoshigoe, Yusuke;Torigoe, Takeru;Kuninobu, Yoichiro research published 《 Regioselective C-H Trifluoromethylation of Aromatic Compounds by Inclusion in Cyclodextrins》, the research content is summarized as follows. A regioselective radical C-H trifluoromethylation of aromatic compounds was developed using cyclodextrins (CDs) as additives. The C-H trifluoromethylation proceeded with high regioselectivity to afford the product in good yield, even on the gram scale. In the presence of CDs, some substrates underwent a single trifluoromethylation selectively, whereas mixtures of single- and double-trifluoromethylated products were formed in the absence of the CD. 1H NMR experiments indicated that the regioselectivity was controlled by the inclusion of a substrate inside the CD cavity.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Electric Literature of 20469-65-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Tong team published research in Journal of Agricultural and Food Chemistry in 2021 | 90-59-5

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic compounds having carbon bonded to bromine are called organic bromides. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. COA of Formula: C7H4Br2O2.

Lu, Tong;Yan, Yingkun;Zhang, Tingting;Zhang, Guilan;Xiao, Tingting;Cheng, Wei;Jiang, Wenjing;Wang, Jingwen;Tang, Xiaorong research published 《 Design, Synthesis, Biological Evaluation, and Molecular Modeling of Novel 4H-Chromene Analogs as Potential Succinate Dehydrogenase Inhibitors》, the research content is summarized as follows. Thirty-one new 4H-chromene derivatives I, II [R1 = 6-Cl, 6,8-Cl2, 6,8-Br2; R2 = F, Cl, Me, etc.] and III [R1 = 6-Cl, 6,8-Cl2, 6,8-Br2; R2 = F, Cl, Me, etc.; X = O,S] were designed and synthesized. Their structures were identified with IR, 1H NMR, 13C NMR, and HRMS. The crystal structure of nitrile derivative was determined by single-crystal X-ray diffraction. Their antifungal activities were evaluated against Pyricularia oryzae, Erysiphe graminis, Coniella diplodiella, Pseudoperonospora cubensis, and Sclerotinia sclerotiorum. These results demonstrated that most compounds exhibited remarkable inhibitory activities at 20μg/mL. Compounds III [R1 = 6,8-Cl2, 6,8-Br2; R2 = F; X = O] displayed excellent antifungal activity against S. sclerotiorum and possessed better efficacy than fluopyram. At the same time, the inhibitory activity of the bioactive compounds was evaluated against succinate dehydrogenase (SDH). The results showed that these compounds possessed outstanding activity. Compounds 4b and 4c displayed better inhibitory activity than fluopyram. The mol. modeling results revealed that compound III [R1 = 6,8-Br2; R2 = F; X = O] had stronger affinity to SDH than fluopyram. It is the first time that the inhibitory activity of 4H-chromene analogs against SDH was reported.

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Tian-Tian team published research in European Journal of Medicinal Chemistry in 2021 | 629-04-9

Computed Properties of 629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane, Computed Properties of 629-04-9

Lu, Tian-Tian;Shimadate, Yuna;Cheng, Bin;Kanekiyo, Uta;Kato, Atsushi;Wang, Jun-Zhe;Li, Yi-Xian;Jia, Yue-Mei;Fleet, George W. J.;Yu, Chu-Yi research published 《 Synthesis and glycosidase inhibition of 5-C-alkyl-DNJ and 5-C-alkyl-L-ido-DNJ derivatives》, the research content is summarized as follows. 5-C-Alkyl-DNJ and 5-C-alkyl-L-ido-DNJ derivatives have been designed and synthesized efficiently from an L-sorbose-derived cyclic nitrone. The DNJ and L-ido-DNJ derivatives with C-5 alkyl chains ranging from Me to dodecyl were assayed against various glycosidases to study the effect of chain length on enzyme inhibition. Glycosidase inhibition study of DNJ derivatives showed potent and selective inhibitions of α-glucosidase; DNJ derivatives with Me, pentyl to octyl, undecyl and dodecyl as C-5 branched chains showed significantly improved rat intestinal maltase inhibition. In contrast, most 5-C-alkyl-L-ido-DNJ derivatives were weak or moderate inhibitors of the enzymes tested, with only three compounds found to be potent α-glucosidase inhibitors. Docking studies showed different interaction modes of 5-C-ethyl-DNJ and 5-C-octyl-DNJ with ntMGAM and also different binding modes of 5-C-alkyl-DNJ and 5-C-alkyl-L-ido-DNJ derivatives; the importance of the degree of accommodation of the C-5 substituent in the hydrophobic groove and pocket may account for the variation of glycosidase inhibition in the two series of derivatives The results reported herein are helpful in the design and development of α-glucosidase inhibitors; this may lead to novel agents for the treatment of viral infection and type II diabetes.

Computed Properties of 629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Pingping team published research in Langmuir in 2021 | 2576-47-8

HPLC of Formula: 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Organic compounds having carbon bonded to bromine are called organic bromides. HPLC of Formula: 2576-47-8.

Lu, Pingping;He, Shuai;Zhou, Yue;Zhang, Yongmin research published 《 Oxidation-Induced Breakage of the Imine Bond and Aggregate Transition in a Se-Containing Dynamic Covalent Surfactant》, the research content is summarized as follows. Controlling the dynamic imine bonds upon a novel trigger except for pH and temperature is still a significant challenge. Here, a Se-containing imine-based dynamic covalent surfactant (HOBAB-BSeEA) was developed for the first time by mixing two precursors in situ: an asym. double-chain cationic surfactant bearing a formyl group at the terminal of one hydrophobic tail and a Se-containing amine (2-(benzylselanyl)ethan-1-amine) in order to confirm the effect of redox on the imine bonds. The imine bond in HOBAB-BSeEA can be regulated not only upon changing the pH as well as other common imine-based surfactants but also by oxidation The conversion efficiency of imine bonds is closely related with the degree of oxidation and pH. Complete oxidation can decrease the conversion efficiency from ~87 to 48%, which is comparable to the result of changing the pH from 10.0 to 7.0. With the formation and breaking of imine bonds, the surfactant can be reversibly switched between sym. and asym. structures, accompanied by a morphol. transition from vesicles to spherical micelles. Although oxidation cannot demolish all imine bonds, it can completely convert vesicles to spherical micelles, which is mainly ascribed to an increase in the polarity of the micellar microenvironment stemming from the oxidation of Se. However, this transition can only be achieved by reducing the pH to 5.0 instead of 7.0. Nile red loaded in HOBAB-BSeEA vesicles can be quickly, controllably, and step-by-step released upon oxidation stimulus but not pH. Understanding the mechanism of oxidation-induced breakage of imine bonds and disruption of vesicles would be useful in designing redox-responsive imine-based carriers that can unload cargoes according to the level of the local reactive oxygen species.

HPLC of Formula: 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Dehua team published research in Bioorganic Chemistry in 2022 | 4897-84-1

Application In Synthesis of 4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 4897-84-1, formula is C5H9BrO2, The most pervasive is the naturally produced bromomethane. Application In Synthesis of 4897-84-1

Lu, Dehua;Qu, Lailiang;Wang, Cheng;Luo, Heng;Li, Shang;Yin, Fucheng;Liu, Xingchen;Chen, Xinye;Luo, Zhongwen;Cui, Ningjie;Peng, Wan;Ji, Limei;Kong, Lingyi;Wang, Xiaobing research published 《 Harmine-based dual inhibitors targeting histone deacetylase (HDAC) and DNA as a promising strategy for cancer therapy》, the research content is summarized as follows. Overexpression of histone deacetylases (HDACs) are observed in different types of cancers, but histone deacetylase inhibitors (HDACIs) have not shown significant efficacy as monotherapy against solid tumors. Recently, studies demonstrated that it is promising to combine HDACIs with DNA damage agents to improve DNA damage level to gain better effect on treating solid tumor. Harmine has been demonstrated to cause DNA damage by intercalating DNA. Therefore, we designed a series of harmine-based inhibitors targeting HDAC and DNA with multi-target strategy, the most potential compound 27 could bind to DNA and cause DNA damage. Furthermore 27 caused cells apoptosis through p53 signaling pathway, and exhibited significant anti-proliferation effects against HCT-116 cells (IC50 = 1.41 μM). As a DNA damage agent, 27 displayed low toxicity in normal cells. Compound 27 was demonstrated as a dual inhibitor targeting HDAC (HDAC1 IC50 = 0.022 μM and HDAC6 IC50 = 0.45 μM) and DNA, and had the potential in the treatment of solid tumor.

Application In Synthesis of 4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., 4897-84-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Chunlei team published research in Advanced Synthesis & Catalysis in 2020 | 6911-87-1

Quality Control of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 6911-87-1, formula is C7H8BrN, Name is 4-Bromo-N-methylaniline. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Quality Control of 6911-87-1.

Lu, Chunlei;Qiu, Zetian;Xuan, Maojie;Huang, Yan;Lou, Yongjia;Zhu, Yiling;Shen, Hao;Lin, Bo-Lin research published 《 Direct N-Alkylation/Fluoroalkylation of Amines Using Carboxylic Acids via Transition-Metal-Free Catalysis》, the research content is summarized as follows. A scalable protocol of direct N-mono/di-alkyl/fluoroalkylation of primary/secondary amines was constructed with various carboxylic acids as coupling agents under the catalysis of a simple air-tolerant inorganic salt, K3PO4. Advantageous features include 100 examples, 10 drugs and drug-like amines, fluorinated complex tertiary amines, gram-scale synthesis and isotope-labeling amine, thus demonstrating the potential applicability in industry of this methodol. The involvement of relatively less reactive silicon-hydride compared with the traditional reactive metal-hydride or boron-hydride species required to reduce the amide intermediates presumably contributes to the remarkable functional group compatibility.

Quality Control of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Biao team published research in Journal of Medicinal Chemistry in 2021 | 402-49-3

Product Details of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Product Details of C8H6BrF3.

Lu, Biao;Liu, Dong;Gui, Bin;Gou, Jun;Dong, Huaide;Hu, Qiyue;Feng, Jun;Mao, Yuchang;Shen, Xiaodong;Wang, Shenglan;Zhang, Caihua;Shen, Ru;Yan, Yinfa;Chen, Lei;Wang, Huiyun;Li, Di;Zhang, Jiayin;Zhang, Minsheng;Zhang, Rumin;Bai, Chang;He, Feng;Tao, Weikang;Liu, Suxing research published 《 Discovery of 2-(Ortho-Substituted Benzyl)-Indole Derivatives as Potent and Orally Bioavailable RORγ Agonists with Antitumor Activity》, the research content is summarized as follows. RORγ is a dual-functional drug target, which involves not only induction of inflammation but also promotion of cancer immunity. The development of agonists of RORγ promoting Th17 cell differentiation could provide a novel mechanism of action (MOA) as an immune-activating anticancer agent. Herein, we describe new 2-(ortho-substituted benzyl)-indole derivatives as RORγ agonists by scaffold hopping based on clin. RORγ antagonist VTP-43742. Interestingly, subtle structural differences of the compounds led to the opposite biol. MOA. After rational optimization for structure-activity relationship and pharmacokinetic profile, we identified a potent RORγ agonist compound 17 (I) that was able to induce the production of IL-17 and IFNγ in tumor tissues and elicit antitumor efficacy in MC38 syngeneic mouse colorectal tumor model. This is the first comprehensive work to demonstrate the in vivo antitumor efficacy of an RORγ agonist.

Product Details of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary