Li, Shichao team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 823-78-9

Application of C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Application of C7H6Br2.

Li, Shichao;Li, Muyao;Li, Shu-Sen;Wang, Jianbo research published 《 Pd-Catalyzed coupling of benzyl bromides with BMIDA-substituted N-tosylhydrazones: synthesis of trans-alkenyl MIDA boronates》, the research content is summarized as follows. A palladium-catalyzed stereoselective synthesis of alkenyl boronates from N-methyliminodiacetyl boronate (BMIDA)-substituted N-tosylhydrazone and benzyl bromides is developed. A range of trans-alkenyl MIDA boronates as single stereoisomers were obtained in moderate yields with good functional group compatibility. The resultant boronate products may be transformed to other boron-containing compounds and may also be directly used in cross-coupling reactions.

Application of C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Shichao team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Application In Synthesis of 402-49-3

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Application In Synthesis of 402-49-3.

Li, Shichao;Li, Muyao;Li, Shu-Sen;Wang, Jianbo research published 《 Pd-Catalyzed coupling of benzyl bromides with BMIDA-substituted N-tosylhydrazones: synthesis of trans-alkenyl MIDA boronates》, the research content is summarized as follows. A palladium-catalyzed stereoselective synthesis of alkenyl boronates from N-methyliminodiacetyl boronate (BMIDA)-substituted N-tosylhydrazone and benzyl bromides is developed. A range of trans-alkenyl MIDA boronates as single stereoisomers were obtained in moderate yields with good functional group compatibility. The resultant boronate products may be transformed to other boron-containing compounds and may also be directly used in cross-coupling reactions.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Application In Synthesis of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Sanliang team published research in Angewandte Chemie, International Edition in 2022 | 20469-65-2

Application In Synthesis of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 20469-65-2, formula is C8H9BrO2, The most pervasive is the naturally produced bromomethane. Application In Synthesis of 20469-65-2

Li, Sanliang;Chen, Qiaoyu;Yang, Junfeng;Zhang, Junliang research published 《 Palladium-Catalyzed Enantioselective γ-Arylation of β,γ-Unsaturated Butenolides》, the research content is summarized as follows. An efficient Pd-catalyzed enantioselective γ-arylation of β,γ-unsaturated butenolides with aryl bromides R1Br (R1 = Ph, naphthalen-1-yl, thiophen-2-yl, etc.), which shows high γ-selectivity, good functional group tolerance and excellent enantioselectivity, to give I (R2 = Me, Bn, cyclohexyl, etc.) was reported. Notably, this protocol also allows for facile construction of tricyclic tetrahydroindolines and tetrahydroisoquinolinones, e.g., II, in one step. DFT calculations are consistent with the exptl. results, suggesting that the γ-arylation is favored over the α-arylation. Finally, this method is applied to the rapid synthesis of natural product (R)-(+)-boivinianin A.

Application In Synthesis of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Ruoyu team published research in Angewandte Chemie, International Edition in 2020 | 5445-17-0

Name: Methyl 2-bromopropanoate, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 5445-17-0, formula is C4H7BrO2, The most pervasive is the naturally produced bromomethane. Name: Methyl 2-bromopropanoate

Li, Ruoyu;An, Zesheng research published 《 Achieving Ultrahigh Molecular Weights with Diverse Architectures for Unconjugated Monomers through Oxygen-Tolerant Photoenzymatic RAFT Polymerization》, the research content is summarized as follows. Achieving well-defined polymers with ultrahigh mol. weight (UHMW) is an enduring pursuit in the field of reversible deactivation radical polymerization Synthetic protocols have been successfully developed to achieve UHMWs with low dispersities exclusively from conjugated monomers while no polymerization of unconjugated monomers has provided the same level of control. Herein, an oxygen-tolerant photoenzymic RAFT (reversible addition-fragmentation chain transfer) polymerization was exploited to tackle this challenge for unconjugated monomers at 10°, enabling facile synthesis of well-defined, linear and star polymers with near-quant. conversions, unprecedented UHMWs and low dispersities. The exquisite level of control over composition, MW and architecture, coupled with operational ease, mild conditions and environmental friendliness, broadens the monomer scope to include unconjugated monomers, and to achieve previously inaccessible low-dispersity UHMWs.

Name: Methyl 2-bromopropanoate, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Qiankun team published research in Journal of Catalysis in 2021 | 90-59-5

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde, COA of Formula: C7H4Br2O2

Li, Qiankun;Wang, Chaoqun;Mu, Hongliang;Jian, Zhongbao research published 《 A readily available neutral nickel catalyst for accessing linear ultrahigh molecular weight polyethylene in a living manner》, the research content is summarized as follows. It is of great importance and is highly desired in the olefin polymerization catalysis that a simple catalyst derived from cheap starting materials and short synthetic pathways exhibits superior catalytic property towards a polymerization reaction. In this contribution, starting from com. available and cheap materials, by using a short and simple three-step reaction route we report a readily available neutral phenoxy-imine nickel catalyst, which significantly enables the formation of linear ultrahigh mol. weight polyethylene (∼5 brs/1000C, Mn = 1531 kDa) in a living polymerization (PDI = 1.08-1.11). An enhancement of 77 times on the polymer mol. weight occurs compared to the classical 2,6-diisopropyl substituted phenoxy-imine nickel catalyst. This avoids a tedious synthetic procedure and the use of an excess aluminum reagent as the activator and the scavenger.

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Peng team published research in European Journal of Medicinal Chemistry in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Application of C7H5BrO2

Organic compounds having carbon bonded to bromine are called organic bromides. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Application of C7H5BrO2.

Li, Peng;Liu, Ying;Yang, Hua;Liu, Hong-Min research published 《 Design, synthesis, biological evaluation and structure-activity relationship study of quinazolin-4(3H)-one derivatives as novel USP7 inhibitors》, the research content is summarized as follows. The design, synthesis and biol. evaluation of novel I [R1 = pyrrolyl, Ph, pyridinyl, etc.] and II [R2 = Et, furanyl, dimethylaminomethylene, etc.;R3 = H, methyl] as potent USP7 inhibitors was reported. This results indicated that the compounds II [R2 = pyrrolidinylmethylene, dimethylaminomethylene;R3 = H, methyl] exhibited the greatest potency against the USP7 catalytic domain, with IC50 values of 4.86μM and 1.537μM, resp. Ub-AMC assays further confirmed IC50 values of 5.048μM and 0.595μM for II [R2 = pyrrolidinylmethylene, dimethylaminomethylene; R3 = H, methyl] resp. MTT assays indicated that gastric cancer MGC-803 cells were more sensitive to these compounds than BGC-823 cells. Flow cytometry anal. revealed that II [R2 = pyrrolidinylmethylene; R3 = H ] restricted cancer cell growth at the G0/G1 and S phases and inhibited the proliferation and clone formation of MGC-803 cells. Further biochem. experiments indicated that II [R2 = pyrrolidinylmethylene; R3 = H ] decreased the MDM2 protein level and increased the levels of the tumor suppressors p53 and p21 in a dose-dependent manner. Docking studies predicted that solvent exposure of the side chains of II [R2 = pyrrolidinylmethylene, dimethylaminomethylene; R3 = H, methyl] would uniquely form hydrogen bonds with Met407 of USP7. Addnl., II [R2 = pyrrolidinylmethylene; R3 = H ] exhibited a remarkable anticancer effect in a zebrafish gastric cancer MGC-803 cell model. Results demonstrated that I [R1 = pyrrolyl, Ph, pyridinyl, etc.] and II [R2 = Et, furanyl, dimethylaminomethylene etc.; R3 = H, methyl] were suitable as leads for the development of novel USP7 inhibitors and especially for anti-gastric cancer drugs.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Application of C7H5BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Nan-Sheng team published research in Tetrahedron Letters in 2021 | 20469-65-2

Safety of 1-Bromo-3,5-dimethoxybenzene, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Organic compounds having carbon bonded to bromine are called organic bromides. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 1-Bromo-3,5-dimethoxybenzene.

Li, Nan-Sheng;Greene, Geoffrey L. research published 《 Reinvestigating the acyl cyclization to the precursor of diptoindonesin G》, the research content is summarized as follows. We reinvestigated the synthesis of the tetramethylated precursor of diptoindonesin G (II) by the intramol. acyl cyclization of compound I or compound III in the presence of trifluoroacetic anhydride (TFAA). Although the reaction of III with TFAA generated II smoothly as reported, the reaction of I with TFAA failed to afford II, and compound I was partially decomposed under the reaction conditions tested.

Safety of 1-Bromo-3,5-dimethoxybenzene, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Lin-Ping team published research in Organic Letters in 2022 | 5392-10-9

SDS of cas: 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 5392-10-9, formula is C9H9BrO3, The most pervasive is the naturally produced bromomethane. SDS of cas: 5392-10-9

Li, Lin-Ping;Han, Jia-Qi;Liu, Yun-Ting;Yang, Fan;Wu, Xiong;Xie, Jian-Hua;Zhou, Qi-Lin research published 《 A Three-Step Process to Facilitate the Enantioselective Assembly of Cis-Fused Octahydrophenanthrenes with a Quaternary Stereocenter》, the research content is summarized as follows. A three-step process for the enantioselective assembly of cis-fused octahydrophenanthrenes with a quaternary stereocenter was reported. This synthetic strategy relied on a regioselective γ-alkylation, a one-pot sequence of asym. hydrogenation and oxidation and an intramol. enolate arylation to facilitate the rapid and enantioselective construction of cis-fused octahydrophenanthrene scaffolds with an arylated all-carbon quaternary stereocenter concisely and efficiently.

SDS of cas: 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Lingdong team published research in Australian Journal of Chemistry in 2021 | 629-04-9

629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., Quality Control of 629-04-9

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Quality Control of 629-04-9.

Li, Lingdong;Jia, Dongxue;Zhang, Guangqing;Ma, Hanxue research published 《 Long-Chained Pyridinium N-Chloramines: Synthesis and Remarkable Biocidal Efficacies for Antibacterial Application》, the research content is summarized as follows. Two types of long-chained pyridinium N-chloramines were designed and synthesized by covalent linking a N-chloramine unit and a long intact alkyl chain via varied alkylation of 3-hydroxypyridine. Preliminary antibacterial tests showed that both synthetic pyridinium N-chloramines exerted distinctively elevated biocidal efficacy in contrast to previously reported pyridinium N-chloramines that lack a long chain. Such enhanced bactericidal behavior was probably caused by synergistic biocidal action between the N-chloramine moiety and the long-chained pyridinium moiety.

629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., Quality Control of 629-04-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Ling team published research in Advanced Synthesis & Catalysis in 2021 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Category: bromides-buliding-blocks

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Category: bromides-buliding-blocks.

Li, Ling;Liu, Zhen-Ting;Hu, Xiang-Ping research published 《 Copper-Catalyzed One-Pot Cascade Cyclization for the Synthesis of Isoindolo[2,1-a]quinoxalines》, the research content is summarized as follows. A copper-catalyzed one-pot cascade cyclization of 2-(1-(acetyloxy)propargyl)benzaldehydes with o-phenylenediamines for an access to substituted isoindolo[2,1-a]quinoxalines has been developed. The reaction features readily available starting materials, simple operational procedure, and broad substrate scopes. Under optimal conditions, various isoindolo[2,1-a]quinoxalines were afforded in 41-88% yields.

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary