Klausfelder, Barbara team published research in Chemistry – A European Journal in | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Quality Control of 402-49-3

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 402-49-3, formula is C8H6BrF3, The most pervasive is the naturally produced bromomethane. Quality Control of 402-49-3

Klausfelder, Barbara;Blach, Patricia;de Jonge, Niels;Kempe, Rhett research published 《 Synthesis of 3,4-Dihydro-2H-Pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization》, the research content is summarized as follows. Syntheses of N-heterocyclic compounds that permit a flexible introduction of various substitution patterns by using inexpensive and diversely available starting materials are highly desirable. Easy to handle and reusable catalysts based on earth-abundant metals are especially attractive for these syntheses. Author report here on the synthesis of 3,4-dihydro-2H-pyrroles via the hydrogenation and cyclization of nitro ketones. The latter are easily accessible from three components: a ketone, an aldehyde and a nitroalkane. The reaction has a broad scope and 23 of the 33 products synthesized are compounds which have not yet been reported. The key to the general hydrogenation/cyclization reaction is a highly active, selective and reusable nickel catalyst, which was identified from a library of 24 earth-abundant metal catalysts.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Quality Control of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kimura, Ryo team published research in Angewandte Chemie, International Edition in 2020 | 244205-40-1

Product Details of C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid, Product Details of C6H6BBrO2

Kimura, Ryo;Kuramochi, Hikaru;Liu, Pengpeng;Yamakado, Takuya;Osuka, Atsuhiro;Tahara, Tahei;Saito, Shohei research published 《 Flapping Peryleneimide as a Fluorogenic Dye with High Photostability and Strong Visible-Light Absorption》, the research content is summarized as follows. Flapping fluorophores (FLAP) with a flexible 8π ring are rapidly gaining attention as a versatile photofunctional system. Here we report a highly photostable “flapping peryleneimide” with an unprecedented fluorogenic mechanism based on a bent-to-planar conformational change in the S1 excited state. The S1 planarization induces an electronic configurational switch, almost quenching the inherent fluorescence (FL) of the peryleneimide moieties. However, the FL quantum yield is remarkably improved with a prolonged lifetime upon a slight environmental change. This fluorogenic function is realized by sensitive π-conjugation design, as a more π-expanded analog does not show the planarization dynamics. With strong visible-light absorption, the FL lifetime response synchronized with the flexible flapping motion is useful for the latest optical techniques such as FL lifetime imaging microscopy (FLIM).

Product Details of C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kim, WooChan team published research in Bioorganic & Medicinal Chemistry Letters in 2022 | 402-49-3

HPLC of Formula: 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 402-49-3, formula is C8H6BrF3, The most pervasive is the naturally produced bromomethane. HPLC of Formula: 402-49-3

Kim, WooChan;Lee, Sun-Mi;Jeong, Pyeong-Hwa;Jung, Jae-Hoon;Kim, Yong-Chul research published 《 Synthesis and structure-activity relationship studies of 1,5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 1 (JAK1) inhibitors》, the research content is summarized as follows. JAK inhibitors have been considered as useful targets for the treatment of related diseases. However, first-generation JAK inhibitors have side effects such as anemia, thrombocytopenia, neutropenia and headaches which have been suggested to result from high JAK2 inhibition. Second-generation JAK inhibitors with more specific JAK isoenzyme inhibition have been studied to eliminate these adverse effects. In this study, novel 4-(1,5- or 2,5-triazole)-pyrrolopyrimidine derivatives with aromatic moieties were synthesized as JAK1 inhibitors, and an in vitro enzyme assay was used to evaluate the JAK inhibitory effects. Among these JAK1 inhibitors, the compound 23a showed an IC50 level of 72 nM, as well as being selective against other JAKs by 12 times or more: the results of mol. docking studies suggested that the high JAK1 selectivity resulted from a key interaction between the iodine atom of compound 23a and His-885 of hJAK1.

HPLC of Formula: 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kim, Won Young team published research in Nano-Micro Letters in 2021 | 4224-70-8

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid. Organic compounds having carbon bonded to bromine are called organic bromides. Reference of 4224-70-8.

Kim, Won Young;Won, Miae;Koo, Seyoung;Zhang, Xingcai;Kim, Jong Seung research published 《 Mitochondrial H2Sn-mediated anti-inflammatory theranostics》, the research content is summarized as follows. The insistent demand for space-controllable delivery, which reduces the side effects of non-steroidal anti-inflammatory drugs (NSAIDs), has led to the development of a new theranostics-based approach for anti-inflammatory therapy. The current anti-inflammatory treatments can be improved by designing a drug delivery system responsive to the infammatory site biomarker, hydrogen polysulfde (H2Sn). Here, we report a novel theranostic agent 1 (TA1), consisting of three parts: H2Sn-mediated triggering part, a two-photon fuorophore bearing mitochondria targeting unit (Rhodol-TPP), and anti-infammatory COX inhibitor (indomethacin). In vitro experiments showed that TA1 selectively reacts with H2Sn to concomitantly release both Rhodol-TPP and indomethacin. Confocal-microscopy imaging of infammation-induced live cells suggested that TA1 is localized in the mitochondria where the H2Sn is overexpressed. The TA1 reacted with H2Sn in the endogenous and exogenous H2Sn environments and in lipopolysaccharide treated infammatory cells. Moreover, TA1 suppressed COX-2 level in the infammatory-induced cells and prostaglandin E2 (PGE2) level in blood serum from infammation-induced mouse models. In vivo experiments with infammation-induced mouse models suggested that TA1 exhibits infammation-site-elective drug release followed by signifcant therapeutic efects, showing its function as a theranostic agent, capable of both anti-infammatory therapy and precise diagnosis. Theranostic behavior of TA1 is highly applicable in vivo model therapeutics for the infammatory disease.

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kim, Taejung team published research in Natural Product Research in | 5392-10-9

Recommanded Product: 2-Bromo-4,5-dimethoxybenzaldehyde, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Organic compounds having carbon bonded to bromine are called organic bromides. Recommanded Product: 2-Bromo-4,5-dimethoxybenzaldehyde.

Kim, Taejung;Kim, Young-Joo;Jeong, Kyu-Hyuk;Park, Young-Tae;Kwon, Hyukjoon;Choi, Pilju;Ju, Ha-Neul;Yoon, Cheol Hee;Kim, Ji-Yool;Ham, Jungyeob research published 《 The efficient synthesis and biological evaluation of justicidin B》, the research content is summarized as follows. A facile new synthetic method for the preparation of a Type-A 1-arylnaphthalene lactone skeleton was developed and used to synthesize justicidin B I [R = 1,3-benzodioxol-5-yl] and several derivatives I [R = 3-furyl, 4-MeOC6H4, CH=CHPh, etc.]. Key synthesis steps included Hauser-Kraus annulation of a phthalide intermediate and Suzuki-Miyaura cross coupling between a triflated naphthalene lactone intermediate and various potassium organotrifluoroborates. With two exceptions, the derivatives showed significant inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse macrophages. Moreover, several compounds, including justicidin B, had marked cytotoxicity towards six human tumor cell lines.

Recommanded Product: 2-Bromo-4,5-dimethoxybenzaldehyde, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kilic, Ahmet team published research in Journal of Organometallic Chemistry in 2022 | 90-59-5

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. COA of Formula: C7H4Br2O2.

Kilic, Ahmet;Soylemez, Rahime;Okumus, Veysi research published 《 Design, spectroscopic properties and effects of novel catechol spiroborates derived from Schiff bases in the antioxidant, antibacterial and DNA binding activity》, the research content is summarized as follows. Novel catechol spiroborates (L(1-5)B) were prepared from the reaction of the corresponding Schiff base (L(1-5)H) ligands, boric acid, and 3,5-di-tert-Bu catechol under favorable reaction conditions. The synthesized all compounds were characterized by NMR spectra, FT-IR spectra, UV-Vis spectra, LC-MS/MS spectra, fluorescence spectra, elemental anal. as well as the m.p. The optical properties of the Schiff base ligands and catechol spiroborates were investigated using – and fluorescence spectra in the C2H5OH. The antioxidant activities of newly synthesized Schiff base ligands and their catechol spiroborates were investigated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and reducing power ability. Among the synthesized catechol spiroborates, (L2B) exhibited the maximum radical scavenging (91.5 ± 2.11%) and reducing power activity (0.654±0.015) at a concentration of 200.0μg/mL. Antibacterial activity was determined using 3 Gram pos. and 2 Gram neg. bacteria by disk diffusion method. Schiff base (L2H) was found to be effective against all test bacteria used. Besides, the DNA binding activity of the catechol spiroborates was determined using Calf Thymus DNA, and the DNA cleavage activity was determined using pBR-322 plasmid DNA by agarose gel electrophoresis method.

COA of Formula: C7H4Br2O2, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Khokra, Sukhbir Lal team published research in Central Nervous System Agents in Medicinal Chemistry in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Safety of 3-Bromobenzoic acid

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Safety of 3-Bromobenzoic acid.

Khokra, Sukhbir Lal;Kaur, Simranjeet;Banwala, Sahil;Wadhwa, Karan;Husain, Asif research published 《 Synthesis, Molecular Docking, and Biological Evaluation of Some Novel 2- (5-Substituted 1,3,4-oxadiazole-2-yl)-1,3-benzothiazole Derivatives as Anticonvulsant Agents》, the research content is summarized as follows. Benzothiazole is an organosulfur heterocyclic compound that has a considerable place in drug discovery due to significant pharmacol. actions. The main objective of the present study was to synthesize some novel 2-(5-substituted 1,3,4-oxadiazole-2-yl)-1,3-benzothiazole derivatives and evaluate them for their anticonvulsant activity using in silico and in vivo methods. A set of sixteen 2-(5-substituted 1, 3, 4-oxadiazole-2-yl)-1, 3-benzothiazole derivatives were prepared using multi-step reactions starting from o-amino-thiophenol and characterized by suitable spectral techniques. The synthesized compounds were evaluated for anticonvulsant activity using in silico and in vivo methods. In silico mol. docking study was performed using Molegro Virtual Docker software to analyze binding modes of compounds with the internal ligand of PDB ID: 1OHY and 1OHV; and in vivo pharmacol. activities were tested for both generalized tonic-clonic seizures and generalized absence (petit mal) seizures using Maximal Elec. Shock and PTZ-induced seizure models, resp. Some new 2-(5-substituted-1,3,4-oxadiazole-2-yl)-1,3- benzothiazole (5a-5p) were successfully synthesized by finally refluxing 1, 3-benzothiazole-2-carboxyhydrazide with different aromatic acids in phosphoryl chloride. Docking results showed that compounds 5c, 5j, and 5m were found to have the highest number of H-bond interactions; i.e. 4, 4, and 7 resp. with target proteins 1OHY and 6, 3, and 4 resp. with target protein 1OHV, whereas phenytoin showed only two H-bonding with both proteins. In the Maximal electroshock seizure method, the synthesized compounds 5h, 5k and 5o demonstrated potent anticonvulsant activity against the tonic seizure with a significant decrease in tonic hind leg extension period with a mean duration of 7.9, 7.4, and 7.0 s resp., as compared to the other synthesized compounds In contrast, in the PTZ-induced seizure model, compounds 5c, 5h, and 5m showed protection against clonic convulsion with significant elevation in the onset time of clonic convulsion at 311.2, 308.0, and 333.11 s, resp. Thus, from the results, it can be concluded that compound 5h, a benzothiazole derivative endowed with an oxadiazole ring, can be developed as a potential anticonvulsant agent.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Safety of 3-Bromobenzoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Khalil, Amjad team published research in Arabian Journal for Science and Engineering in 2021 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Related Products of 585-76-2

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 585-76-2, formula is C7H5BrO2, The most pervasive is the naturally produced bromomethane. Related Products of 585-76-2

Khalil, Amjad;Jaradat, Nidal;Hawash, Mohammed;Issa, Linda research published 《 In Vitro Biological Evaluation of Benzodioxol Derivatives as Antimicrobial and Antioxidant Agents》, the research content is summarized as follows. The 1,3-benzodioxol moiety present in safrole, apiole, and myristicin essential oils and benzodioxol derivatives have shown a wide range of biol. activities including antiepileptic, analgesic, antituberculosis, and antimicrobial potentials. Here, we have tested the antibacterial and antioxidant activities of a series of benzodioxol derivatives Twelve compounds of aryl acetate and acetic acid benzodioxol were evaluated against different types of bacterial strains, including Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa using the broth dilution method, and the most potent compound was 3e, which exhibited the bacterial growth of with MICs of 125 (S. aureus), 250 (E. coli), 220 (E. faecalis), and 100μg/mL (P. aeruginosa). Our pos. control, cinoxacin, had MICs of 250 (S. aureus), 250 (E. coli), 250 (E. faecalis), and 500μg/mL (P. aeruginosa). Antioxidant activity was evaluated for the synthesized compounds utilizing the DPPH assay. The 3a compound was the most active with an IC50 value of 21.44μg/mL, while the IC50 values of compounds 3b, 3e, and 3f were 96.07, 58.45, and 72.17μg/mL, resp. In contrast, all compounds with the acetic acid functional group had weaker activity, with an IC50 range of 193.52-289.78μg/mL compared with the potent antioxidant agent Trolox (IC50 = 1.93μg/mL). In the present paper, new benzodioxol-based aryl acetate and acetic acid derivatives were evaluated for their antibacterial and antioxidant activities. The outcomes revealed that the antibacterial and antioxidant properties of some of the synthesized benzodioxol aryl acetate and acetic acid derivatives can be considered as valuable materials for the pharmaceutical industry. Thus, these mols. should be further evaluated in vivo as lead compounds for the discovery of new drug candidates.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Related Products of 585-76-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Khairul, Wan M. team published research in International Journal of Hydrogen Energy in | 629-04-9

629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., Recommanded Product: 1-Bromoheptane

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Recommanded Product: 1-Bromoheptane.

Khairul, Wan M.;Rahamathullah, Rafizah;Joni, Janice Roria;Isa, M. I. N. research published 《 Density functional theory (DFT) calculations, synthesis and electronic properties of alkoxylated-chalcone additive in enhancing the performance of CMC-based solid biopolymer electrolyte》, the research content is summarized as follows. Alkoxylated-chalcone having push-pull system has been integrated as additive in solid biopolymer electrolyte (SBE) based on CM-cellulose (CMC) doped with ammonium chloride (NH4Cl). The structural, optical and thermal stability of the additive were characterized via FT-IR spectroscopy, UV-Vis, 1D NMR and TGA prior film casting as SBE. The optical band gaps (Eoptg) of alkoxylated-chalcone additive exhibited low range, 3.14 eV which are comparable to that corresponding simulated findings, whereas they lie within the range of organic semiconductor materials. Frontier MOs (FMO) anal., chem. reactivity and mol. electrostatic potential (MEP) revealed that the oxygen on alkoxy chain and -NO2 substituent tuning the energy level of HOMO and LUMO. The investigation of their potential as additive in SBE system has been accomplished by incorporating CMC-NH4Cl electrolyte using solution-casting method. A various weight ratio (0-8%) of additive was tested and doped with CMC-NH4Cl as new SBE. The highest ionic conductivity achieved was 2.3 x 10-2 Scm-1 at ambient temperature (303K) for the system containing 8 weight% of chalcone-based additive. The findings imply that the designated chalcone-based moiety has a potential to be employed as additive materials towards the performance enhancement for electrochem. the interests.

629-04-9, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., Recommanded Product: 1-Bromoheptane

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kesharwani, Neha team published research in Catalysis Letters in 2021 | 90-59-5

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 90-59-5, formula is C7H4Br2O2, Name is 3,5-Dibromo-2-hydroxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Safety of 3,5-Dibromo-2-hydroxybenzaldehyde.

Kesharwani, Neha;Chaudhary, Nikita;Haldar, Chanchal research published 《 Heterogeneous Catalytic Oxidative Bromination and Oxidation of Thioethers By Vanadium(IV) Oxido Complex of Benzoylacetone and Effect of Solid Supports》, the research content is summarized as follows. Vanadium(IV) oxido complex of 1-Phenyl-1,3-butanedione [VIVO(bzac)2] (1) was prepared, characterized, and heterogenized onto APTMS modified graphene oxide, as well as imidazole modified polystyrene beads. Graphene oxide supported complex GO-APTMS-[VIVO(bzac)2] (2) and polymer anchored complex PS-i.m.-[VIVO(bzac)2] (3) were used for the oxidative bromination of a number of small organic mols. and oxidation of a series of thioethers. Both 2 and 3 evolve as excellent heterogeneous catalysts. The nature of solid support does not impact substrate conversion (%) during the oxidative bromination of salicylaldehyde, phenol, or styrene, whereas it influences the substrate conversion (%) as well as the product selectivity (%) during the oxidation of thioethers.

Safety of 3,5-Dibromo-2-hydroxybenzaldehyde, 3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes.

3,5-Dibromosalicylaldehyde, also known as 3,5-Dibromosalicylaldehyde, is a useful research compound. Its molecular formula is C7H4Br2O2 and its molecular weight is 279.91 g/mol. The purity is usually 95%.

3,5-Dibromosalicylaldehyde reacts with alkyl cyanoacetates in the presence of ammonium acetate to yield 4H- chromenes. 3,5-Dibromosalicylaldehyde can be used in the synthesis of Schiff base and can be used as reactant for synthesis of Schiff base ligands which forms mononuclear complexes with copper(II), nickel(II), zinc(II) and cobalt(II).

3,5-Dibromosalicylaldehyde is a copper complex that has been synthesized from 3,5-dibromosalicylaldehyde and copper chloride. FTIR spectroscopy revealed that the coordination geometry of the copper complex is octahedral with two nitrogen atoms in the equatorial plane. The presence of hydrogen bonding interactions was confirmed by homologous protein adsorption experiments. This chemical structure was determined using X-ray crystallography and fluorescence probe experiments. The copper complex showed high affinity for malonic acid, which is an ester hydrochloride. The molecular mechanism of this interaction is based on adsorption, which occurs through hydrogen bonding interactions and hydrophobic interactions. Structural analysis revealed that the polymeric matrix consists of a three-dimensional network of crosslinked chains, while FTIR analysis indicated a possible disulfide bond between two cysteine residues., 90-59-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary