Jung, Hui Jin team published research in Bioorganic & Medicinal Chemistry Letters in 2021 | 70-23-5

Product Details of C5H7BrO3, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 70-23-5, formula is C5H7BrO3, Name is Ethyl 3-bromo-2-oxopropanoate. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Product Details of C5H7BrO3.

Jung, Hui Jin;Nam, Eun Hye;Park, Jin Young;Ghosh, Prithwish;Kim, In Su research published 《 Identification of BR102910 as a selective fibroblast activation protein (FAP) inhibitor》, the research content is summarized as follows. Fibroblast activation protein (FAP) belongs to the family of prolyl-specific serine proteases and displays both exopeptidase and endopeptidase activities. FAP expression is undetectable in most normal adult tissues, but is greatly upregulated in sites of tissue remodeling, which include fibrosis, inflammation and cancer. Due to its restricted expression pattern and dual enzymic activities, FAP inhibition is investigated as a therapeutic option for several diseases. In the present study, the authors describe the structure-activity relationship of several synthesized compounds against DPPIV and prolyl oligopeptidase (PREP). In particular, BR102910, I showed nanomolar potency and high selectivity. Moreover, the in vivo FAP inhibition study of I using C57BL/6J mice demonstrated exceptional profiles and satisfactory FAP inhibition efficacy. Based on excellent in vitro and in vivo profiles, the potential of I as a lead candidate for the treatment of type 2 diabetes is considered.

Product Details of C5H7BrO3, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Judge, Neil R. team published research in European Journal of Organic Chemistry in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Recommanded Product: 1-(Bromomethyl)-4-(trifluoromethyl)benzene

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Recommanded Product: 1-(Bromomethyl)-4-(trifluoromethyl)benzene.

Judge, Neil R.;Chacktas, Geraud;Ma, Ling;Schink, Anke;Buckpesch, Rainer;Schmutzler, Dirk;Machettira, Anu B.;Dietrich, Hansjorg;Asmus, Elisabeth;Bierer, Donald;McLeod, Michael C. research published 《 Flexible Synthesis and Herbicidal Activity of Fully Substituted 3-Hydroxypyrazoles》, the research content is summarized as follows. The synthesis and herbicidal efficacy of a novel library of fully substituted 3-hydroxypyrazoles I (R1 = H, Me, Et, i-Pr, 2-methoxyethyl; R2 = H, 2,4-F2, 3,4-F2, 3-Cl, etc.; A = O, S, CH2, etc.) is reported. An efficient, divergent approach to introduce Ph, phenoxy, phenylsulfanyl, anilino and benzyl substituents in the 4-position of the pyrazole, alongside a flexible synthesis of N1-alkyl analogs I is described via final step diversification of key intermediates. Herbicidal screening of the prepared compounds against key weed species identified the lead compound I (R1 = Me; R2 = H, 2,4-F2; A = O), which was prepared on a multi-gram scale using an optimized synthetic route.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Recommanded Product: 1-(Bromomethyl)-4-(trifluoromethyl)benzene

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jud, Wolfgang team published research in Journal of Organic Chemistry in 2021 | 20469-65-2

Synthetic Route of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Organic compounds having carbon bonded to bromine are called organic bromides. Synthetic Route of 20469-65-2.

Jud, Wolfgang;Sommer, Florian;Kappe, C. Oliver;Cantillo, David research published 《 Electrochemical α-Arylation of Ketones via Anodic Oxidation of in situ Generated Silyl Enol Ethers》, the research content is summarized as follows. An electrochem. procedure for the α-arylation of ketones has been developed. The method is based on the generation and one-pot anodic oxidation of silyl enol ethers in the presence of an arene. This strategy avoids isolation of the silyl enol intermediate and the utilization of external supporting electrolytes. Intermol. arylations, which had not been reported so far, are possible when electron-rich arenes are utilized as coupling partners. The method has been demonstrated for a wide variety of aryl ketones and activated arenes in moderate to good yields (up to 69%). Mechanistic insights and a theor. rationale that explained the ketone α-arylation vs. dimerization selectivity are also presented.

Synthetic Route of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ju, Cheng-Wei team published research in Journal of the American Chemical Society in 2021 | 244205-40-1

Category: bromides-buliding-blocks, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid, Category: bromides-buliding-blocks

Ju, Cheng-Wei;Li, Bo;Li, Lianghui;Yan, Weiguang;Cui, Chunming;Ma, Xiaonan;Zhao, Dongbing research published 《 Modular Synthesis of Pentagonal and Hexagonal Ring-Fused NBN-Phenalenes Leading to an Excited-State Aromatization-Induced Structural Planarization Molecular Library》, the research content is summarized as follows. Although polycyclic aromatic hydrocarbons (PAHs) with a nitrogen-boron-nitrogen (NBN) moiety have recently attracted tremendous interest due to their intriguing electronic and optoelectronic properties, all of the NBN-fused π-systems reported to date are called NBN-dibenzophenalenes and were synthesized by electrophilic aromatic substitution. The synthesis of NBN-phenalenes remains challenging, and transition-metal catalysis has never been utilized to construct NBN-embedded π-scaffolds. Herein, a palladium-catalyzed cyclization/bicyclization strategy was developed for the synthesis of diverse pentagonal and hexagonal ring-fused NBN-phenalenes and half-NBN-phenalenes. All of the NBN-embedded π-scaffolds presented in our paper are fluorescent in both solution and the solid state. Further investigations showed that the five-membered NBN rings exhibit the properties of traditional luminogens, while those with a six-membered NBN ring generally undergo photoinduced structural planarization (PISP) and exhibit different colors and quantum yields of fluorescence with different concentrations in solution Time-resolved spectroscopy and TD-DFT calculations revealed that excited-state aromatization is the driving force for PISP in hexagonal ring-fused NBN-π systems, leading to the formation of excimers. Notably, the scope of PISP compounds is still quite limited, and PISP has never been observed in NBN-π systems before. These hexagonal ring-fused NBN-π systems constitute a novel PISP mol. library and appear to be a new class of aggregation-induced excimer emission (AIEE) materials. Finally, the AIEE behavior of these six-membered NBN rings was applied to the detection of nitro explosives, achieving excellent sensitivity. In general, this work provides a new viewpoint for synthesizing NBN-fused π-systems and understanding the excited-state motion of luminogens.

Category: bromides-buliding-blocks, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jourjine, Ilya A. P. team published research in Beilstein Journal of Organic Chemistry in 2021 | 20469-65-2

Formula: C8H9BrO2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 20469-65-2, formula is C8H9BrO2, The most pervasive is the naturally produced bromomethane. Formula: C8H9BrO2

Jourjine, Ilya A. P.;Zeisel, Lukas;Krauss, Juergen;Bracher, Franz research published 《 Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone》, the research content is summarized as follows. Highly substituted fluorenones are readily prepared in mostly fair to good yields via metal- and additive-free TBHP-promoted cross-dehydrogenative coupling (CDC) of readily accessible N-methyl-2-(aminomethyl)biphenyls and 2-(aminomethyl)biphenyls. This methodol. is compatible with numerous functional groups (methoxy, cyano, nitro, chloro, and SEM and TBS-protective groups for phenols) and was further utilized in the first total synthesis of the natural product nobilone.

Formula: C8H9BrO2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jouffroy, Matthieu team published research in Chemistry – A European Journal in 2022 | 6911-87-1

Application In Synthesis of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 6911-87-1, formula is C7H8BrN, The most pervasive is the naturally produced bromomethane. Application In Synthesis of 6911-87-1

Jouffroy, Matthieu;Nguyen, Thi-Mo;Cordier, Marie;Blot, Marielle;Roisnel, Thierry;Gramage-Doria, Rafael research published 《 Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall》, the research content is summarized as follows. Direct reductive amination (DRA) is a ubiquitous reaction in organic chem. This transformation between a carbonyl group and an amine is most often achieved by using a super stoichiometric amount of hazardous hydride reagents, thus being incompatible with many sensitive functional groups. DRA could also be achieved by means of chemo- or biocatalysis, thereby attracting the interest of industry as well as academic laboratories due to the virtually perfect atom economy. Although DRAs are well-established for substrate pairs such as aldehydes with either 1° or 2° amines as well as ketones with 1° amines, the current methodologies are limited in the case of ketones with 2° amines. Herein, a general DRA protocol that overcomes this major limitation by means of iridium catalysis is presented. The applicability of the methodol. is demonstrated by accessing an unprecedented range of biol. relevant tertiary amines starting from both aliphatic ketones and aliphatic amines. The choice of a disphosphane ligand (Josiphos A or Xantphos) is essential for the success of the transformation.

Application In Synthesis of 6911-87-1, 4-Bromo-N-methylaniline is a aniline based compound known to exhibit mutagenic properties.
4-Bromo-N-methylaniline is a useful research compound. Its molecular formula is C7H8BrN and its molecular weight is 186.05 g/mol. The purity is usually 95%.
4-Bromophenylmethylamine is an organic compound that has anti-inflammatory properties and is used as a pharmaceutical. It belongs to the group of amines. The hydrolysis of 4-bromophenylmethylamine by hydrochloric acid produces phenol and bromamine (NHBr). The reaction system can be used to synthesize a number of compounds, including anilines, benzofurans, and other aromatic compounds. 4-Bromophenylmethylamine reacts with muscle tissue in a similar manner as acetaminophen does. This drug also has been shown to have significant effects on the energy metabolism in the muscles of rats that are given carbon source., 6911-87-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jonker, Sybrand J. T. team published research in Journal of the American Chemical Society in 2020 | 70-23-5

70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., Synthetic Route of 70-23-5

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 70-23-5, formula is C5H7BrO3, The most pervasive is the naturally produced bromomethane. Synthetic Route of 70-23-5

Jonker, Sybrand J. T.;Jayarajan, Ramasamy;Kireilis, Tautvydas;Deliaval, Marie;Eriksson, Lars;Szabo, Kalman J. research published 《 Organocatalytic Synthesis of α-Trifluoromethyl Allylboronic Acids by Enantioselective 1,2-Borotropic Migration》, the research content is summarized as follows. Chiral α-substituted allylboronic acids were synthesized by asym. homologation of alkenylboronic acids using CF3/TMS-diazomethanes in the presence of BINOL catalyst and ethanol. The chiral α-substituted allylboronic acids were reacted with aldehydes or oxidized to alcs. in situ with a high degree of chirality transfer. The oxygen-sensitive allylboronic acids can be purified via their isolated diaminonaphthalene (DanH)-protected derivatives The highly reactive purified allylboronic acids reacted in a self-catalyzed reaction at room temperature with ketones, imines, and indoles to give congested trifluoromethylated homoallylic alcs./amines with up to three contiguous stereocenters.

70-23-5, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., Synthetic Route of 70-23-5

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jin, Yu-Ting team published research in Journal of Asian Natural Products Research in | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Synthetic Route of 823-78-9

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Synthetic Route of 823-78-9.

Jin, Yu-Ting;Qi, Yan-Qiu;Jin, Mei;Sun, Jin-Feng;Diao, Sheng-Bao;Zhou, Wei;Zhao, Long-Xuan;Li, Gao research published 《 Synthesis, antitumor and antibacterial activities of cordycepin derivatives》, the research content is summarized as follows. Twelve novel cordycepin derivatives were designed and synthesized with modification at positions of 2′, 5′-hydroxyl and N6 amino groups of cordycepin. The results showed that the inhibitory activities of , , and on A549 were comparable to the pos. control gefitinib, and the inhibitory activity of on A549 was better than that of gefitinib. Also, the inhibitory activities of twelve cordycepin derivatives against E. coli 1924, S. aureus 4220 and S. mutans 3289 were studied. Among them, showed certain inhibitory on S. mutans 3289, while showed certain inhibition on S. aureus 4220.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Synthetic Route of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jin, Xin team published research in Mendeleev Communications in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., COA of Formula: C8H6BrF3

Organic compounds having carbon bonded to bromine are called organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. COA of Formula: C8H6BrF3.

Jin, Xin;Yang, Tingting;Xia, Chenlu;Wang, Nina;Liu, Zi;Cao, Jianguo;Ma, Liang;Huang, Guozheng research published 《 Design and synthesis of alepterolic acid and 5-fluorouracil conjugates as potential anticancer agents》, the research content is summarized as follows. Conjugates of alepterolic acid with 5-fluorouracil derivatives I (Ar = Ph, 2,4-dichlorophenyl, 1-naphthyl, etc.) have been synthesized in 70-90% yields. The cytotoxic evaluation against two human cancer cell lines, viz. MCF-7 (breast) and A549 (lung), using MTT assay showed anticancer activities of the obtained compounds

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., COA of Formula: C8H6BrF3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jin, Wangrui team published research in Journal of Medicinal Chemistry in 2022 | 585-76-2

Computed Properties of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Computed Properties of 585-76-2.

Jin, Wangrui;Zhang, Tao;Zhou, Wenbo;He, Peng;Sun, Yue;Hu, Shijia;Chen, Huang;Ma, Xinglong;Peng, Yangrui;Yi, Zhengfang;Liu, Mingyao;Chen, Yihua research published 《 Discovery of 2-Amino-3-cyanothiophene Derivatives as Potent STAT3 Inhibitors for the Treatment of Osteosarcoma Growth and Metastasis》, the research content is summarized as follows. A novel class of 2-amino-3-cyanothiophene derivatives I [R5 = Ph, 2-pyridyl, pyrimidin-4-yl, etc] and II [R6 = methoxy, methylpyrazolyl, anilino, etc] were designed and synthesized to inhibit osteosarcoma by targeting STAT3. Representative compound II [R6 = 4-methoxy anilino] showed potent antiproliferative effects against osteosarcoma cells, directly bound to the STAT3 SH2 domain with a KD of 0.46μM, and inhibited the phosphorylation of STAT3 Y705 in a dose-dependent manner. Furthermore, compound II [R6 = 4-methoxy anilino] promoted osteosarcoma cell apoptosis in vitro and significantly suppressed the growth and metastasis of osteosarcoma in vivo. These findings demonstrate that targeting STAT3 may be a feasible therapeutic strategy for the treatment of metastatic osteosarcoma.

Computed Properties of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary