Hu, Lijun team published research in European Journal of Medicinal Chemistry in 2021 | 70-23-5

Category: bromides-buliding-blocks, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 70-23-5, formula is C5H7BrO3, Name is Ethyl 3-bromo-2-oxopropanoate. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Category: bromides-buliding-blocks.

Hu, Lijun;Ren, Qiang;Deng, Liming;Zhou, Zongtao;Cai, Zongyu;Wang, Bin;Li, Zheng research published �Design, synthesis, and biological studies of novel 3-benzamidobenzoic acid derivatives as farnesoid X receptor partial agonist� the research content is summarized as follows. Farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, regulates the metabolism of bile acid and lipids as well as maintains the stability of internal environment. FXR was considered as a therapeutic target of liver disorders, such as drug-induced liver injury, fatty liver and cholestasis. The previous reported FXR partial agonist I was a suitable lead compound in terms of its high potent and low mol. size, while the docking study of compound I suggested a large unoccupied hydrophobic pocket, which might be provided more possibility of structure-activity relationship (SAR) study. In this study, we have performed comprehensive SAR and mol. modeling studies based on lead compound I. All of these efforts resulted in the identification of a novel series of FXR partial agonists. In this series, compound II revealed the best activity and strong interaction with binding pocket of FXR. Moreover, compound II protected mice against acetaminophen-induced hepatotoxicity by the regulation of FXR-related gene expression and improving antioxidant capacity. In summary, these results suggest that compound II is a promising FXR partial agonist suitable for further investigation.

Category: bromides-buliding-blocks, Ethyl bromopyruvate molecular formula is C5H7BrO3 and its molecular weight is 195.01 g/mol. The purity is usually 95%.

Ethyl bromopyruvate is used in a synthesis of thioxothiazolidines from carbon disulfide and primary amines.

Ethyl bromopyruvate is a chemical inhibitor that inhibits the enzyme pyruvate dehydrogenase, which is responsible for the conversion of pyruvic acid to acetyl-CoA. This inhibition leads to a decrease in ATP levels and can cause metabolic disorders. Ethyl bromopyruvate is used as an anthelmintic drug and in asymmetric synthesis. It is also used in the synthesis of thiostrepton, an antibiotic that has been shown to have antimicrobial activity against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pneumoniae., 70-23-5.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Kunjun team published research in Organometallics in 2022 | 19111-87-6

Related Products of 19111-87-6, 2-Bromotriphenylene is a useful research compound. Its molecular formula is C18H11Br and its molecular weight is 307.2 g/mol. The purity is usually 95%.
2-Bromotriphenylene is a brominating agent that has the ability to react with sodium carbonate and emit light. The luminescence of 2-bromotriphenylene can be used as an indicator of the degree of dilution, or how much water is present in a solution. It also emits light when it reacts with chloride ions in a reaction solution. 2-Bromotriphenylene can be used as a polymer matrix to form polymeric films, which are then used as catalysts for organic reactions. The luminescence properties of 2-bromotriphenylene make it suitable for use in functional theory experiments. This chemical compound is relatively low cost, and has been shown to have high yield in catalysis., 19111-87-6.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 19111-87-6, formula is C18H11Br, The most pervasive is the naturally produced bromomethane. Related Products of 19111-87-6

Hu, Kunjun;Gao, Yunlong;Jin, Jian research published �Nickel-Catalyzed N-Arylation of Diarylamines for Triarylamine Synthesis� the research content is summarized as follows. A practical Ni-catalyzed C-N cross-coupling reaction between diarylamines and aryl halides was developed using com. available NiCl2(dppf) as the catalyst. This robust method can be efficiently applied to a variety of diarylamines which are privileged motifs in materials science, including phenoxazines, phenothiazines, carbazoles, diphenylamines, 9-10-dihydroacridines, 10,11-Dihydro-5H-dibenzo[b,f]azepines, 5H-dibenzo[b,f]azepines, and 9H-tribenzo[b,d,f]azepines.

Related Products of 19111-87-6, 2-Bromotriphenylene is a useful research compound. Its molecular formula is C18H11Br and its molecular weight is 307.2 g/mol. The purity is usually 95%.
2-Bromotriphenylene is a brominating agent that has the ability to react with sodium carbonate and emit light. The luminescence of 2-bromotriphenylene can be used as an indicator of the degree of dilution, or how much water is present in a solution. It also emits light when it reacts with chloride ions in a reaction solution. 2-Bromotriphenylene can be used as a polymer matrix to form polymeric films, which are then used as catalysts for organic reactions. The luminescence properties of 2-bromotriphenylene make it suitable for use in functional theory experiments. This chemical compound is relatively low cost, and has been shown to have high yield in catalysis., 19111-87-6.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Jiyong team published research in Polyhedron in 2022 | 1575-37-7

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organic compounds having carbon bonded to bromine are called organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Recommanded Product: 4-Bromobenzene-1,2-diamine.

Hu, Jiyong;Chao, Tingting;Yuan, Bangpeng;Guo, Yan;Zhang, Junshuai;Zhao, Jin′an;Zhao, Xuemin;Hou, Hongwei research published ã€?Benzimidazole-quinoline-based copper complexes: Exploration for their possible antitumor mechanismã€? the research content is summarized as follows. In this study, we synthesized and characterised two benzimidazole-quinoline-based copper complexes, namely, [Cu(btmbq)Br]2 (1) and [Cu(btmbq)Cl]2 (2), (btmbq = 3-(1-(1H-benzotriazol-1-y-l)methyl)-6-bromo-1H-benzoimidazol-2-yl)isoquinoline). Both complexes showed strong antitumor abilities against the colon cancer cell line (HCT116) and low cytotoxicity against the normal liver cell line (L-02). The DNA binding affinity was evaluated using CD and fluorescence spectroscopy, and the Ksv and Kapp values were further quantified, revealing that the complexes bound to DNA in the intercalation mode, and caused oxidative damage to pBR322 DNA. Furthermore, complex 1 interfered with the steady-state balance of redox and Ca2+ in HCT116 cells, as well as induced cell mitochondrial membrane potential (Δψm) collapse, ATP dissipation, ultimately arrested the cell cycle in G2 phase and induced cell apoptosis. Further exploration demonstrated that the production of reactive oxygen species (ROS) might be the major contributors to the apoptotic death of HCT116 cells.

Recommanded Product: 4-Bromobenzene-1,2-diamine, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Guang-Qi team published research in Organic Letters in 2021 | 20469-65-2

Product Details of C8H9BrO2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene, Product Details of C8H9BrO2

Hu, Guang-Qi;Bai, Jing-Wen;Li, En-Ci;Liu, Kai-Hui;Sheng, Fei-Fei;Zhang, Hong-Hai research published �Synthesis of Multideuterated (Hetero)aryl Bromides by Ag(I)-Catalyzed H/D Exchange� the research content is summarized as follows. Herein, a direct H/D exchange protocol was disclosed for deuteration of (hetero)aryl bromides using Ag2CO3 as catalyst and D2O as deuterium source. This protocol was highly efficient, simply manipulated and appliable for deuterium-labeling of over 55 (hetero)aryl bromides including bioactive druglike mols. and key intermediates of functional materials. In addition, this method showed distinguishing site-selectivity toward the existing transition-metal-catalyzed HIE process, leading to multideuterated (hetero)aryl bromides in one step.

Product Details of C8H9BrO2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, De-Xuan team published research in Journal of Medicinal Chemistry in 2021 | 5392-10-9

SDS of cas: 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Organic compounds having carbon bonded to bromine are called organic bromides. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. SDS of cas: 5392-10-9.

Hu, De-Xuan;Tang, Wen-Lin;Zhang, Yu;Yang, Hao;Wang, Wenjie;Agama, Keli;Pommier, Yves;An, Lin-Kun research published ã€?Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-Resistant Cancerã€? the research content is summarized as follows. Herein, the synthesis of benzophenanthridinone derivatives I [R = 1-MeO, 2-Br, 8-OH, etc], II [R1 = R2 = 2,3-OCH2O, 8,9-Meo, 8,9-F], III [R3 = 8-F, 8-Br, 9-MeO; R4 = R5 = 2,3-OCH2O, 2,3-MeO, etc] as TOP1 and TDP1 inhibitors was reported. Seven compounds III [R3 = 8-F, 8-NO2, 8-MeO, 9-Cl, 7,8-OH, 8,9-F; R4 = R5 = 2,3-OCH2O] showed a robust TOP1 inhibitory activity (+++ or ++++), and four compounds I [R = 12-MeO] and III [R3 = 7,8-OH, 8-MeO, 8,9-MeO; R4 = R5 = 2,3-OCH2O, 8,9-MeO] showed a TDP1 inhibition (half-maximal inhibitory concentration values of 15 or 19μM). Also the dual TOP1 and TDP1 inhibitor III [R = 2,3-OCH2O, 7,8-OH] induces both cellular TOP1cc, TDP1cc formation and DNA damage was showed ,resulting in cancer cell apoptosis at a sub-micromolar concentration In addition, III [R = 2,3-OCH2O, 7,8-OH] showed an enhanced activity in drug-resistant MCF-7/TDP1 cancer cells and was synergistic with topotecan in both MCF-7 and MCF-7/TDP1 cells.

SDS of cas: 5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., 5392-10-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Chenghong team published research in Journal of Molecular Liquids in 2021 | 629-04-9

Application of C7H15Br, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 629-04-9, formula is C7H15Br, Name is 1-Bromoheptane. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Application of C7H15Br.

Hu, Chenghong;He, Xi;Han, Yunyan;Ye, Xiangyuan;Fan, Mingjin;Zhou, Feng;Liu, Weimin research published ã€?High performance lubricants prepared from Naphthalene-1,4,5,8-Tetracarboxylic acid: Synthesis, physicochemical and Tribological propertiesã€? the research content is summarized as follows. Ester oils (1,4,5,8-4Cn) were synthesized through esterification of naphthalene-1,4,5,8-tetracarboxylic acid with aliphatic alcs. The mol. structures were confirmed with 1H NMR, 13C NMR, FT-IR and elemental anal. Their KV, VI, FP, PP, oxidation and thermal stabilities, friction reducing and anti-wear performances were measured. The results demonstrate that the 1,4,5,8-4Cn have obviously higher thermal and oxidation stabilities than the existing esters DOS, PIS and Phe-3Ci8. They also have predominant tribol. behavior at both 50°C and 120°C. Analyzing from the results of ECR, QCM and XPS, it could be concluded that strongly and orderly physicochem. adsorption of the 1,4,5,8-4Cn mols. on the sliding surfaces is the critical factor for these oils to demonstrate excellent tribol. performance for steel contacts.

Application of C7H15Br, 1-Bromoheptane is a useful research compound. Its molecular formula is C7H15Br and its molecular weight is 179.1 g/mol. The purity is usually 95%.
1-Bromoheptane is a reagent that is used for the preparation of alkylthiophienylzinc chloride.
1-Bromoheptane is a reactive compound that is used in the preparation of p-hydroxybenzoic acid, which is an intermediate in the synthesis of many natural compounds. 1-Bromoheptane has been shown to have biological properties and to inhibit mitochondrial membrane potential. It also causes cell lysis and hepatic steatosis in mice. This compound has been shown to inhibit the activity of enzymes such as acetylcholinesterase, butyrylcholinesterase, and carboxylesterase. 1-Bromoheptane can be used as a model for studying the effects on congestive heart failure by increasing cardiac workloads or decreasing myocardial contractility., 629-04-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Chaolei team published research in Journal of Colloid and Interface Science in 2021 | 5445-17-0

Application In Synthesis of 5445-17-0, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Organic compounds having carbon bonded to bromine are called organic bromides. 5445-17-0, formula is C4H7BrO2, Name is Methyl 2-bromopropanoate. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Application In Synthesis of 5445-17-0.

Hu, Chaolei;Xu, Wenjing;Conrads, Christian Martin;Wu, Jingnan;Pich, Andrij research published �Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers� the research content is summarized as follows. Light-responsive microgels are interesting colloidal systems with potential applications in the biotechnol. and medicine. However, synthesis of light-responsive microgels with high loading of photoswitchable mols. is still very challenging. Herein we developed a new method to synthesize light and temperature dual-responsive spiropyran-modified poly(N-vinylcaprolactam) microgels. The novel and straightforward microgels synthesis route involved: a) synthesis of poly(N-vinylcaprolactam-co-vinylformamide) copolymers via RAFT polymerization followed by the hydrolysis to obtain primary amine groups, b) attachment of carboxyl-modified spiropyran mols. to polymer chains via coupling, and c) crosslinking of spiropyran-modified polymer chains in W/O miniemulsion to form microgels. Via this method, we successfully synthesized poly(N-vinylcaprolactam) microgels containing more than 10 mol% spiropyran. The reversible light responsiveness of the spiropyran-modified copolymers and microgels in aqueous solution, which originates from the spiropyran photoisomerization under irradiation with different wavelengths, was demonstrated by UV-Vis spectroscopy. Spiropyran-modified copolymers demonstrate shift of the lower critical solution temperature (LCST) due to the polarity change of spiropyran mols. under dark, UV and visible light. Surprisingly, dynamic light scattering (DLS) results show that the microgels based on the same copolymers are less affected by UV irradiation Microgels are swollen in darkness when spiropyran mols. are in the polar, merocyanine form, and collapse after irradiation with visible light, due to the transformation of spiropyran to the relatively nonpolar, closed spirocyclic form. In addition, the spiropyran-modified microgels exhibit reversible temperature responsiveness by presenting a volume phase transition in water from a swollen state to a collapsed state with increasing temperature and the transition temperature decreased compared to the pristine microgels due to the hydrophobicity of spiropyran units.

Application In Synthesis of 5445-17-0, Methyl 2-bromopropionate, also known as Methyl 2-bromopropionate, is a useful research compound. Its molecular formula is C4H7BrO2 and its molecular weight is 167 g/mol. The purity is usually 95%.
Methyl 2-bromopropionate is used in the synthesis of poly(ADP-Ribose)polymerase inhibitors derived from benzoxazin-3-one. Also used in the synthesis of 5-HT2C antagonists affecting serotonin levels.
Methyl 2-bromopropanoate is a chemical compound that can be synthesized in an asymmetric manner. The reaction of methyl 2-bromopropanoate with hydrochloric acid gives the corresponding carboxylic acid, methyl propanoate, and hydrogen bromide in a 1:1 ratio. It has been shown that methyl 2-bromopropanoate is a potential catalyst for the reduction of chloride to chloride ion via the borohydride reduction method. Methyl 2-bromopropanoate has also been used as a model system for studying halides and copper complexes. Magnetic resonance spectroscopy studies have revealed that this chemical compound has a high redox potential and kinetic properties., 5445-17-0.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Chaolei team published research in Journal of Colloid and Interface Science in 2021 | 4897-84-1

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Formula: C5H9BrO2

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 4897-84-1, formula is C5H9BrO2, Name is Methyl 4-bromobutanoate. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Formula: C5H9BrO2.

Hu, Chaolei;Xu, Wenjing;Conrads, Christian Martin;Wu, Jingnan;Pich, Andrij research published �Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers� the research content is summarized as follows. Light-responsive microgels are interesting colloidal systems with potential applications in the biotechnol. and medicine. However, synthesis of light-responsive microgels with high loading of photoswitchable mols. is still very challenging. Herein we developed a new method to synthesize light and temperature dual-responsive spiropyran-modified poly(N-vinylcaprolactam) microgels. The novel and straightforward microgels synthesis route involved: a) synthesis of poly(N-vinylcaprolactam-co-vinylformamide) copolymers via RAFT polymerization followed by the hydrolysis to obtain primary amine groups, b) attachment of carboxyl-modified spiropyran mols. to polymer chains via coupling, and c) crosslinking of spiropyran-modified polymer chains in W/O miniemulsion to form microgels. Via this method, we successfully synthesized poly(N-vinylcaprolactam) microgels containing more than 10 mol% spiropyran. The reversible light responsiveness of the spiropyran-modified copolymers and microgels in aqueous solution, which originates from the spiropyran photoisomerization under irradiation with different wavelengths, was demonstrated by UV-Vis spectroscopy. Spiropyran-modified copolymers demonstrate shift of the lower critical solution temperature (LCST) due to the polarity change of spiropyran mols. under dark, UV and visible light. Surprisingly, dynamic light scattering (DLS) results show that the microgels based on the same copolymers are less affected by UV irradiation Microgels are swollen in darkness when spiropyran mols. are in the polar, merocyanine form, and collapse after irradiation with visible light, due to the transformation of spiropyran to the relatively nonpolar, closed spirocyclic form. In addition, the spiropyran-modified microgels exhibit reversible temperature responsiveness by presenting a volume phase transition in water from a swollen state to a collapsed state with increasing temperature and the transition temperature decreased compared to the pristine microgels due to the hydrophobicity of spiropyran units.

4897-84-1, Methyl 4-bromobutyrate,also as known as 4-Bromobutyric acid methyl ester, is a useful research compound. Its molecular formula is C5H9BrO2 and its molecular weight is 181.03 g/mol. The purity is usually 95%.
4-Bromobutyric acid methyl ester is a synthetic compound that can be used to inhibit the activity of the G1 phase cyclin-dependent kinases. It has been shown to inhibit protein synthesis by alkylating the amino groups of proteins and fatty acids. 4-Bromobutyric acid methyl ester also inhibits the growth of cancer cell lines, such as renal carcinoma cells. The mechanism of action for this drug is not well understood, but it may be due to its ability to bind with monoclonal antibodies and enter kidney cells by passive diffusion., Formula: C5H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hu, Chao team published research in ACS Catalysis in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Product Details of C7H6Br2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Product Details of C7H6Br2.

Hu, Chao;Farshadfar, Kaveh;Dietl, Martin C.;Cervantes-Reyes, Alejandro;Wang, Tao;Adak, Tapas;Rudolph, Matthias;Rominger, Frank;Li, Jun;Ariafard, Alireza;Hashmi, A. Stephen K. research published �Gold-Catalyzed [5,5]-Rearrangement� the research content is summarized as follows. A highly efficient gold-catalyzed cycloisomerization of 1,5-diynes to afford indeno[1,2-c]furans I [R = n-pentyl, Ph, 4-ClC6H4, etc.; R1 = H, 6-OMe 5-F, etc.; R2 = 4-MeC6H4, 2-IC6H4CH2, 3-I-4-MeC6H3, etc.] was developed. Various functional groups were tolerated under the mild reaction conditions, which provided an alternative approach for the synthesis of compounds I. On the basis of mechanistic studies, including crossover experiments, deuterium labeling and computational chem., the product formation proceeded via a formal [5,5]-sigmatropic rearrangement, a yet unknown reactivity pattern in gold catalysis. Instead of a synchronous concerted [5,5]-sigmatropic rearrangement and beyond an asynchronous concerted mode, each involving a single transition state, two energetically low transition states (1.8 and 5.6 kJ/mol) and an intermediate associate of the migrating benzyl cation and the vinyl gold species could be located in the computations.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Product Details of C7H6Br2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Hou, Zhanfeng team published research in Organic Letters in 2022 | 4224-70-8

Safety of 6-Bromohexanoic acid, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Organic compounds having carbon bonded to bromine are called organic bromides. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Safety of 6-Bromohexanoic acid.

Hou, Zhanfeng;Wang, Yuena;Wan, Chuan;Song, Lijuan;Wang, Rui;Guo, Xiaochun;Yang, Dongyan;Zhang, Yaping;Qin, Xuan;Zhou, Ziyuan;Zhang, Xinhao;Yin, Feng;Li, Zigang research published �Sulfonium Triggered Alkyne-Azide Click Cycloaddition� the research content is summarized as follows. Herein the first facile Cu-free click reaction between alkynyl sulfoniums RCCR1 (R = diphenyl-sulfanyliumyl, dibenzothiophenium-5-yl, thianthrenium-5-yl, etc.; R1 = H, Me, Ph, etc.) and azides R2N3 [R2 = C6H5CH2, CH2CO2H, Ph(CH2)3, etc.] at ambient temperatures in aqueous media was reported. DFT computations indicate that the sulfonium group is the key factor to gaining reactivity by stabilizing LUMO+1 and influencing the charge distribution of the triple bond. Sulfonium alkynes can be easily synthesized and scaled up, and most of them are biocompatible. Here candidate mols. were prepared and tested their use in multiple proof-of-concept biol. applications.

Safety of 6-Bromohexanoic acid, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary