Pashaei, Babak’s team published research in Chemical Science in 2020 | CAS: 4316-58-9

In general, Tris(4-bromophenyl)amine(cas: 4316-58-9) is often used in the synthesis of porous luminescent covalent–organic polymers (COPs)Product Details of 4316-58-9

《Molecularly engineered hole-transport material for low-cost perovskite solar cells》 was written by Pashaei, Babak; Bellani, Sebastiano; Shahroosvand, Hashem; Bonaccorso, Francesco. Product Details of 4316-58-9 And the article was included in Chemical Science in 2020. The article conveys some information:

Triphenylamine-N-phenyl-4-(phenyldiazenyl)aniline (TPA-AZO) is synthesized via a facile CuI-catalyzed reaction and used as a hole transport material (HTM) in perovskite solar cells (PSCs), as an alternative to the expensive spiro-type mol. materials, including com. 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD). Exptl. and computational investigations reveal that the HOMO (HOMO) level of TPA-AZO is deeper than that of spiro-OMeTAD, and optimally matches with the conduction band of the perovskite light absorber. The use of TPA-AZO as a HTM results in PSC prototypes with a power conversion efficiency (PCE) approaching that of the spiro-OMeTAD-based reference device (17.86% vs. 19.07%). Moreover, the use of inexpensive starting reagents for the synthesis of TPA-AZO makes the latter a new affordable HTM for PSCs. In particular, the cost of 1 g of TPA-AZO ($22.76) is significantly lower compared to that of spiro-OMeTAD ($170-475). Overall, TPA-AZO-based HTMs are promising candidates for the implementation of viable PSCs in large-scale production In the experiment, the researchers used Tris(4-bromophenyl)amine(cas: 4316-58-9Product Details of 4316-58-9)

In general, Tris(4-bromophenyl)amine(cas: 4316-58-9) is often used in the synthesis of porous luminescent covalent–organic polymers (COPs)Product Details of 4316-58-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary