Kaieda, Akira et al. published their research in ChemMedChem in 2019 | CAS: 29421-99-6

4-Bromo-5-methylthiophene-2-carboxylic acid (cas: 29421-99-6) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Product Details of 29421-99-6

Structure-Based Design, Synthesis, and Biological Evaluation of Imidazo[4,5-b]Pyridin-2-one-Based p38 MAP Kinase Inhibitors: Part 2 was written by Kaieda, Akira;Takahashi, Masashi;Fukuda, Hiromi;Okamoto, Rei;Morimoto, Shinji;Gotoh, Masayuki;Miyazaki, Takahiro;Hori, Yuri;Unno, Satoko;Kawamoto, Tomohiro;Tanaka, Toshimasa;Itono, Sachiko;Takagi, Terufumi;Sugimoto, Hiroshi;Okada, Kengo;Lane, Weston;Sang, Bi-Ching;Saikatendu, Kumar;Matsunaga, Shinichiro;Miwatashi, Seiji. And the article was included in ChemMedChem in 2019.Product Details of 29421-99-6 This article mentions the following:

We identified novel potent inhibitors of p38 mitogen-activated protein (MAP) kinase using a structure-based design strategy, beginning with lead compound, 3-(butan-2-yl)-6-(2,4-difluoroanilino)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (1). To enhance the inhibitory activity of 1 against production of tumor necrosis factor-濞?(TNF-濞? in human whole blood (hWB) cell assays, we designed and synthesized hybrid compounds in which the imidazo[4,5-b]pyridin-2-one core was successfully linked with the p-methylbenzamide fragment. Among the compounds evaluated, 3-(3-tert-butyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-6-yl)-4-methyl-N-(1-methyl-1H-pyrazol-3-yl)benzamide (25) exhibited potent p38 inhibition, superior suppression of TNF-濞?production in hWB cells, and also significant in vivo efficacy in a rat model of collagen-induced arthritis (CIA). In this paper, we report the discovery of potent, selective, and orally bioavailable imidazo[4,5-b]pyridin-2-one-based p38 MAP kinase inhibitors. In the experiment, the researchers used many compounds, for example, 4-Bromo-5-methylthiophene-2-carboxylic acid (cas: 29421-99-6Product Details of 29421-99-6).

4-Bromo-5-methylthiophene-2-carboxylic acid (cas: 29421-99-6) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Product Details of 29421-99-6

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Golestanzadeh, Mohsen et al. published their research in ChemistrySelect in 2019 | CAS: 96761-85-2

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Formula: C24H15Br3

Effect of Confined Spaces in the Catalytic Activity of 1D and 2D Heterogeneous Carbon-Based Catalysts for Synthesis of 1,3,5-Triarylbenzenes: RGO-SO3H vs. MWCNTs-SO3H was written by Golestanzadeh, Mohsen;Naeimi, Hossein. And the article was included in ChemistrySelect in 2019.Formula: C24H15Br3 This article mentions the following:

One hot debate between catalytic activities of sulfonated reduced graphene oxide (RGO-SO3H), as the 2D heterogeneous carbon-based catalyst, and sulfonated multi-walled carbon nanotubes (MWCNTs-SO3H), as the 1D heterogeneous carbon-based catalyst, was investigated in the synthesis of 1,3,5-triarylbenzenes under different conditions. This comparison study revealed that the 2D catalytic system was more efficient relative to the 1D catalyst in terms of yields of the target products, turnover frequency of the catalyst (TOF), and the reusability. The reasons of this observation such as sp. surface area, confinement spaces in 1D and 2D carbon-based catalysts, solvent accessible surface area, surface active sites, and the availability of supported functional groups on carbon nanostructures will discuss. Moreover, the application of synthesized compounds as a substrate was checked in carbon-carbon bond formation. Also, one of the synthesized compounds was produced using three approaches under metal and non-metal conditions. Notably, the recyclability of the two catalytic systems was checked. In the experiment, the researchers used many compounds, for example, 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2Formula: C24H15Br3).

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Formula: C24H15Br3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Dyson, George M. et al. published their research in Journal of the Chemical Society in 1929 | CAS: 615-55-4

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Aminobenzothiazoles. XI. Synthesis of 5,4′-disubstituted 1-anilinobenzothiazoles from nuclear substituted thiocarbenilides was written by Dyson, George M.;Hunter, Robert F.;Soyka, Charles. And the article was included in Journal of the Chemical Society in 1929.Safety of 3,4-Dibromoaniline This article mentions the following:

(P-BrC6H4NH)2CS and Br in CHCl3 yield a perbromide, which, on heating, gives a hydropentabromide(I), C13H8N2Br2S.HBr.Br4, orange-red needles, m. 170闁?(decomposition) and rapidly loses Br on exposure to moist air suspended in H2SO3 and treated with SO2, there results 5,4′-dibromo-1-anilinobenzothiazole(II), m. 221闁? Ac derivative, m. 205-6闁? HBr salt, m. 250闁?(decomposition); Br gives I. 1-Chloro-5-bromobenzothiazole, m. 89闁? b13 157-9闁? results by heating p-BrC6H4NCS and PCl5 30-40 hrs. at 170-80闁?warming with p-BrC6H4NH2 gives II. p-BrC6H4NHCSNHPh and Br in CHCl3 give the hydrotribromide, m. 148闁?(decomposition), which is reduced to 4′-bromo-1-anilinobenzothiazole (III), m. 214-5闁? also obtained from 1-chlorobenzothiazole and p-BrC6H4NH2. Bromination of III gives II. 1-Anilinobenzothiazole yields a hexabromide, m. 140闁? which yields II on being dissolved in boiling absolute EtOH. Hugershoff’s dibromoanilinobenzothiazole (Ber. 36, 3121(1903)) appears to consist mainly of II, although the m. p. could not be raised above 200闁? Bromination of II gives an unstable orange hexabromide, m. 254闁? which gives with hot absolute EtOH a tetra-Br substitution derivative, m. 196-8闁? (p-ClC6H4NH)2CS and Br in CHCl3 yield a hydrotribromide, orange, m. 165-7闁?(decompm); reduction gives 5,4′-dichloro-1-aminobenzothiazole, m. 224闁? Ac derivative, m. 186-7闁? HBr salt. yellow, m. 217闁? hexabromide, orange, m. 263闁?(decomposition). p-ClC6H4NHCSNHPh yields a Br addition compound, orange, m. 130闁?(decomposition); 4′-chloro-1-anilinobenzothiazole, m. 196闁? this is also obtained from 1-chlorobenzothiazole and p-ClC6H4NH2. (p-IC6H4NH)2CS and Br in CHCl3 yield a red bromide, m. 185闁? and a yellow, m. 211闁? both, on reduction, yield 5,4′-diiodo-1-anilinobenzothiazole, m. 193闁?(decomposition); this also results by treating 1-anilinobenzothiazole in AcOH with ICl, warming the solution and diluting with H2O. (p-FC6H4NH)2CS gives a hydrotribromide, orange, m. 150-2闁?(decomposition); 5,4′-difluoro-1-anilinobenzothiazole, m. 227-8闁? 5,4′-Dinitro-1-anilinobenzothiazole, brilliant yellow, in. 280闁? this also results on nitration of 1-anilinobenzothiazole. (p-NCC6H4NH)2CS and Br give an addition product, golden, m. 159-60闁?(decomposition): 5,4′-dicyano-1-anilinobenzothiazole, m. 222闁? (p-EtO2CC6H4NH)2CS yields a hydropentabromide, orange, m. 110闁?(decompn); reduction gives Et 1-anilinobenzothiazole-5,4′-dicarboxylate, m. 190-2闁? hydrolysis gives the free acid, does not m. 290闁? (p-MeOC6H4NH)2CS yields a brick-red bromide, m. 137闁?(decomposition), reduced to a dibromo-5,4′-dimethoxy-1-anilinobenzothiazole, m. 240闁? PhNHCSNAcPh yields a hydrotribromide, orange, m. 167闁?(decomposition); the same compound is obtained from 1-acetanilinobenzothiazole, HBr and Br (Hugershoff, Ber. 36, 3136(1903)); Br in CHCl3 gives an orange hexa-Br addition compound, m. 163闁?(decomposition). In the experiment, the researchers used many compounds, for example, 3,4-Dibromoaniline (cas: 615-55-4Safety of 3,4-Dibromoaniline).

3,4-Dibromoaniline (cas: 615-55-4) belongs to organobromine compounds. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.Safety of 3,4-Dibromoaniline

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Bose, Shubhankar Kumar et al. published their research in ACS Catalysis in 2016 | CAS: 57293-19-3

1-(3-Bromopropyl)-4-methoxybenzene (cas: 57293-19-3) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Synthetic Route of C10H13BrO

Highly efficient synthesis of alkylboronate esters via Cu(II)-catalyzed borylation of unactivated alkyl bromides and chlorides in air was written by Bose, Shubhankar Kumar;Brand, Simon;Omoregie, Helen Oluwatola;Haehnel, Martin;Maier, Jonathan;Bringmann, Gerhard;Marder, Todd B.. And the article was included in ACS Catalysis in 2016.Synthetic Route of C10H13BrO This article mentions the following:

A copper(II)-catalyzed borylation of alkyl halides with bis(pinacolato)diboron (B2pin2) has been developed, which can be carried out in air, providing a wide range of primary, secondary, and some tertiary alkylboronates in high yields. A variety of functional groups are tolerated and the protocol is also applicable to unactivated alkyl chlorides (including 1,1- and 1,2-dichlorides). Preliminary mechanistic investigations show that this borylation reaction involves one-electron processes. In the experiment, the researchers used many compounds, for example, 1-(3-Bromopropyl)-4-methoxybenzene (cas: 57293-19-3Synthetic Route of C10H13BrO).

1-(3-Bromopropyl)-4-methoxybenzene (cas: 57293-19-3) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Synthetic Route of C10H13BrO

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Varney, Michael D. et al. published their research in Journal of Medicinal Chemistry in 1997 | CAS: 38239-45-1

5-Bromo-3-methylthiophene-2-carboxylic acid (cas: 38239-45-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Product Details of 38239-45-1

Protein Structure-Based Design, Synthesis, and Biological Evaluation of 5-Thia-2,6-diamino-4(3H)-oxopyrimidines: Potent Inhibitors of Glycinamide Ribonucleotide Transformylase with Potent Cell Growth Inhibition was written by Varney, Michael D.;Palmer, Cindy L.;Romines, William H. III;Boritzki, Theodore;Margosiak, Stephen A.;Almassy, Robert;Janson, Cheryl A.;Bartlett, Charlotte;Howland, Eleanor J.;Ferre, Rosanne. And the article was included in Journal of Medicinal Chemistry in 1997.Product Details of 38239-45-1 This article mentions the following:

The design, synthesis, biochem., and biol. evaluation of a novel series of 5-thia-2,6-diamino-4(3H)-oxopyrimidine inhibitors of glycinamide ribonucleotide transformylase (GART) are described. The compounds were designed using the X-ray crystal structure of human GART. The monocyclic 5-thiapyrimidinones were synthesized by coupling an alkyl thiol with 5-bromo-2,6-diamino-4(3H)-pyrimidinone. The bicyclic compounds were prepared in both racemic and diastereomerically pure forms using two distinct synthetic routes. The compounds were found to have human GART Kis ranging from 30 婵炴挾鎷?to 2 nM. The compounds inhibited the growth of both L1210 and CCRF-CEM cells in culture with potencies down to the low nanomolar range and were found to be selective for the de novo purine biosynthesis pathway. The most potent inhibitors had 2,5-disubstituted thiophene rings attached to the glutamate moiety. Placement of a Me substituent at the 4-position of the thiophene ring resulted in inhibitors with significantly decreased mFBP (human folate-binding protein) affinity. In the experiment, the researchers used many compounds, for example, 5-Bromo-3-methylthiophene-2-carboxylic acid (cas: 38239-45-1Product Details of 38239-45-1).

5-Bromo-3-methylthiophene-2-carboxylic acid (cas: 38239-45-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Product Details of 38239-45-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Salomon, Adi et al. published their research in Journal of the American Chemical Society in 2004 | CAS: 56523-59-2

15-Bromopentadecanoic acid (cas: 56523-59-2) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Formula: C15H29BrO2

Stable Room-Temperature Molecular Negative Differential Resistance Based on Molecule-Electrode Interface Chemistry was written by Salomon, Adi;Arad-Yellin, Rina;Shanzer, Abraham;Karton, Amir;Cahen, David. And the article was included in Journal of the American Chemical Society in 2004.Formula: C15H29BrO2 This article mentions the following:

The authors show reproducible, stable neg. differential resistance (NDR) at room temperature in mol.-controlled, solvent-free devices, based on reversible changes in mol.-electrode interface properties. The active component is the cyclic disulfide end of mols. adsorbed onto Hg. As this active component is reduced, the Hg-mol. contact is broken, and an insulating barrier at the mol.-electrode interface is formed. Therefore, the alignment of the mol. energy levels, relative to the Fermi levels of the electrodes, is changed. This effect results in a decrease in the current with voltage increase as the reduction process progresses, leading to the so-called NDR behavior. The effect is reproducible and repeatable over >50 scans without any reduction in the current. The stability of the system, which is in the solid state except for the Hg, is due to the mol. design where long alkyl chains keep the mols. aligned with respect to the Hg electrode, even when they are not bound to it any longer. In the experiment, the researchers used many compounds, for example, 15-Bromopentadecanoic acid (cas: 56523-59-2Formula: C15H29BrO2).

15-Bromopentadecanoic acid (cas: 56523-59-2) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Formula: C15H29BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Parker, Kathlyn A. et al. published their research in Organic Letters in 2002 | CAS: 74440-80-5

4-Amino-3-bromophenol (cas: 74440-80-5) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Related Products of 74440-80-5

Heterocycle Annulation of Enolizable Vinyl Quinone Imides. Dihydroquinolines and Quinolines from Thermal 6闁?Electrocyclizations and Indoles from Photochemical Cyclizations was written by Parker, Kathlyn A.;Mindt, Thomas L.. And the article was included in Organic Letters in 2002.Related Products of 74440-80-5 This article mentions the following:

Enolizable vinyl quinone mono- and diimide substrates I (R = Ac, Me3SiCH2CH2SO2; X = O, NR) undergo cyclization in toluene with HMPA in the dark to provide protected 6-hydroxy and 6-amino dihydroquinolines II (R = Ac, Me3SiCH2CH2SO2; X = O, NR) in 55-71% yields. Aromatization of I (R = Ac, Me3SiCH2CH2SO2; X = O, NR) provides the corresponding quinolines upon deprotection of the dihydroquinoline nitrogens. The substrates I are prepared from bromophenylenediamines and bromoaminophenols using a Stille coupling to assemble the framework followed by deprotection (if needed) and oxidation to generate the quinone imides. When the quinone monoimides I (R = Ac, Me3SiCH2CH2SO2; X = O) are stirred in toluene with HMPA under ambient light, the hydroxyindoles III (R = Ac, Me3SiCH2CH2SO2) are obtained instead in 59-69% yields. In the experiment, the researchers used many compounds, for example, 4-Amino-3-bromophenol (cas: 74440-80-5Related Products of 74440-80-5).

4-Amino-3-bromophenol (cas: 74440-80-5) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Related Products of 74440-80-5

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mansour, Ahmed M. et al. published their research in European Journal of Inorganic Chemistry in 2019 | CAS: 954-81-4

N-(5-Bromopentyl)phthalimide (cas: 954-81-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Related Products of 954-81-4

Pyridylbenzimidazole-Based Gold(III) Complexes: Lysozyme Metalation, DNA Binding Studies, and Biological Activity was written by Mansour, Ahmed M.;Shehab, Ola R.. And the article was included in European Journal of Inorganic Chemistry in 2019.Related Products of 954-81-4 This article mentions the following:

The lysozyme binding affinity of new Au(III) complexes, bearing pyridylbenzimidazole ligands, was studied by ESI-MS and UV/visible. Metalation of lysozyme happened mainly by {Au}n+, {AuCl}0/n+ and {AuCl2}n+/-. The appendage sulfonate group of pyridylbenzimidazole ligand system played a role in determining the products of interaction of HEWL with Au(III) complexes. The hydrophilic sulfonate group inhibited the ligand cleavage via the participation in several coulombic and H-bond interactions giving several AuLn+ containing adduct peaks (L = 1-[(pyridin-2-yl) benzimidazole]-propyl-sulfonic acid). The stability of the complexes in presence of ascorbic acid was examined by UV/visible and 13C NMR. To recognize if His15 side-chain is the metalation site of HEWL, the interactions between the complexes and imidazole, as a simple model of histidine, were studied by 1H and 13C NMR. The DNA binding studies of the complexes are reported. For this class of Au(III) complexes, it is preferred to decorate the pyridylbenzimidazole system with Et group rather than sulfonate and phthalimido group to have a complex with interesting antifungal activity against Candida albicans and Cryptococcus neoformans var. grubii. Au(III) complex, having sulfonate group, is noncytotoxic to non-malignant cells (human embryonic kidney cells (HEK293)), shows negligible Hb release and is safe to the normal cells if applicable. In the experiment, the researchers used many compounds, for example, N-(5-Bromopentyl)phthalimide (cas: 954-81-4Related Products of 954-81-4).

N-(5-Bromopentyl)phthalimide (cas: 954-81-4) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Related Products of 954-81-4

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kankanala, Jayakanth et al. published their research in Journal of Medicinal Chemistry in 2019 | CAS: 6515-58-8

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.COA of Formula: C8H7BrO2

Novel Deazaflavin Analogues Potently Inhibited Tyrosyl DNA Phosphodiesterase 2 (TDP2) and Strongly Sensitized Cancer Cells toward Treatment with Topoisomerase II (TOP2) Poison Etoposide was written by Kankanala, Jayakanth;Ribeiro, Carlos J. A.;Kiselev, Evgeny;Ravji, Azhar;Williams, Jessica;Xie, Jiashu;Aihara, Hideki;Pommier, Yves;Wang, Zhengqiang. And the article was included in Journal of Medicinal Chemistry in 2019.COA of Formula: C8H7BrO2 This article mentions the following:

Topoisomerase II (TOP2) poisons as anticancer drugs work by trapping TOP2 cleavage complexes (TOP2cc) to generate DNA damage. Repair of such damage by tyrosyl DNA phosphodiesterase 2 (TDP2) could render cancer cells resistant to TOP2 poisons. Inhibiting TDP2, thus, represents an attractive mechanism-based chemosensitization approach. Currently known TDP2 inhibitors lack cellular potency and/or permeability. We report herein two novel subtypes of the deazaflavin TDP2 inhibitor core. By introducing an addnl. Ph ring to the N-10 Ph ring (subtype 11) or to the N-3 site of the deazaflavin scaffold (subtype 12), we have generated novel analogs with considerably improved biochem. potency and/or permeability. Importantly, many analogs of both subtypes, particularly compounds 11a, 11e, 12a, 12b, and 12h, exhibited much stronger cancer cell sensitizing effect than the best previous analog 4a toward the treatment with etoposide, suggesting that these analogs could serve as effective cellular probes. In the experiment, the researchers used many compounds, for example, 3-(Bromomethyl)benzoic acid (cas: 6515-58-8COA of Formula: C8H7BrO2).

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.COA of Formula: C8H7BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sarmah, Swapnalee et al. published their research in Polyhedron in 2004 | CAS: 74440-80-5

4-Amino-3-bromophenol (cas: 74440-80-5) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Recommanded Product: 4-Amino-3-bromophenol

Synthesis of new dinuclear and mononuclear peroxovanadium(V) complexes containing biogenic co-ligands: a comparative study of some of their properties was written by Sarmah, Swapnalee;Kalita, Diganta;Hazarika, Pankaj;Borah, Ruli;Islam, Nashreen S.. And the article was included in Polyhedron in 2004.Recommanded Product: 4-Amino-3-bromophenol This article mentions the following:

Dinuclear peroxo complexes of vanadium, [V2O2(O2)3(asn)3]閻犺櫣鏋?sub>2O (1, asn = asparagine) and [V2O2(O2)3(gln)3]閻犺櫣鏋?sub>2O (2, gln = glutamine) were synthesized from the reaction of V2O5 with H2O2 and the resp. amino acid ligand at pH 闂?. Similar reactions conducted at pH 闂? afforded the monomeric complexes, Na[VO(O2)2(asn)]閻犺櫣鏋?sub>2O (3) and Na[VO(O2)2(gln)]閻犺櫣鏋?sub>2O (4). The compounds were characterized by elemental anal. and spectral studies. In complexes 1 and 2, the two V(V) centers are bridged by a peroxo group and an amino acid ligand occurring as a zwitterion. The monomeric complexes 3 and 4 contain peroxo groups bonded in a side-on fashion and an amino acid co-ligand binding the V(V) center through O (carboxylate) atoms. The complexes 1 and 2 rapidly degraded in aqueous solution with release of O2 and formation of diperoxovanadate and decavanadate as shown by 51V NMR spectra whereas complexes 3 and 4 remained stable in solution for over 24 h. Extent and rate of O2 released from the two types of complexes under the effect of catalase action further evidenced the differences in their V:O22- content and mode of peroxide binding in these species. The 婵?peroxovanadate complexes 1 and 2 instantaneously oxidized bromide to a bromination-competent intermediate in phosphate buffer at physiol. pH, and also efficiently mediated bromination of organic substrates in aqueous-organic media. Complexes 3 and 4 were inactive for bromination under analogous conditions. These findings make the dinuclear complexes 1 and 2 possible candidates of mimic in the action of vanadium in bromoperoxidase. In the experiment, the researchers used many compounds, for example, 4-Amino-3-bromophenol (cas: 74440-80-5Recommanded Product: 4-Amino-3-bromophenol).

4-Amino-3-bromophenol (cas: 74440-80-5) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Recommanded Product: 4-Amino-3-bromophenol

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary