Chism, Katherine A. et al. published their research in Journal of Polymer Science (Hoboken, NJ, United States) in 2022 | CAS: 128-08-5

1-Bromopyrrolidine-2,5-dione (cas: 128-08-5) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Formula: C4H4BrNO2

Removal of photoredox catalysts from polymers synthesized by organocatalyzed atom transfer radical polymerization was written by Chism, Katherine A.;Corbin, Daniel A.;Miyake, Garret M.. And the article was included in Journal of Polymer Science (Hoboken, NJ, United States) in 2022.Formula: C4H4BrNO2 This article mentions the following:

Organocatalyzed atom transfer radical polymerization (O-ATRP) is a method of producing polymers with precise structures under mild conditions using organic photoredox catalysts (PCs). Due to the unknown toxicity of PCs and their propensity to introduce color in polymers synthesized by this method, removal of the PC from the polymer product can be important for certain applications of polymers produced using O-ATRP. Current purification methods largely rely on precipitation to remove the PC from the polymer, but a more effective and efficient purification method is needed. In this work, an alternative purification method relying on oxidation of the PC to PC·+ followed by filtration through a plug to remove PC·+ from the polymer and removal of the volatiles was developed. A range of chem. oxidants and stationary phases were tested for their ability to remove PCs from polymers, revealing chem. oxidation by N-bromosuccinimide followed by a filtration through a silica plug can remove up to 99% of the PC from poly(Me methacrylate). Characterization of the polymer before and after purification demonstrated that polymer mol. weight, dispersity, and chain-end fidelity are not signficantly impacted by this purification method. Finally, this purification method was tested on a range of dihydrophenazine, phenoxazine, dihydroacridines, and phenothiazine PCs, revealing the strength of the chem. oxidant must match the oxidation potential of the PC for effective purification In the experiment, the researchers used many compounds, for example, 1-Bromopyrrolidine-2,5-dione (cas: 128-08-5Formula: C4H4BrNO2).

1-Bromopyrrolidine-2,5-dione (cas: 128-08-5) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.Formula: C4H4BrNO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Blakney, Anna K. et al. published their research in Biomacromolecules in 2020 | CAS: 53784-83-1

Heptakis(6-Bromo-6-Deoxy)-β-Cyclodextrin (cas: 53784-83-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Electric Literature of C42H63Br7O28

Mannosylated Poly(ethylene imine) Copolymers Enhance saRNA Uptake and Expression in Human Skin Explants was written by Blakney, Anna K.;Abdouni, Yamin;Yilmaz, Gokhan;Liu, Renjie;McKay, Paul F.;Bouton, Clement R.;Shattock, Robin J.;Becer, C. Remzi. And the article was included in Biomacromolecules in 2020.Electric Literature of C42H63Br7O28 This article mentions the following:

MRNA is a promising platform for both vaccines and therapeutics, and self-amplifying RNA (saRNA) is particularly advantageous, as it enables higher protein expression and dose minimization. Here, we present a delivery platform for targeted delivery of saRNA using mannosylated poly(ethylene imine) (PEI) enabled by the host-guest interaction between cyclodextrin and adamantane. We show that the host-guest complexation does not interfere with the electrostatic interaction with saRNA and observed that increasing the degree of mannosylation inhibited transfection efficiency in vitro, but enhanced the number of cells expressing GFP by 8-fold in human skin explants. Besides, increasing the ratio of glycopolymer to saRNA also enhanced the percentage of transfected cells ex vivo. We identified that these mannosylated PEIs specifically increased protein expression in the epithelial cells resident in human skin in a mannose-dependent manner. This platform is promising for further study of glycosylation of PEI and targeted saRNA delivery. In the experiment, the researchers used many compounds, for example, Heptakis(6-Bromo-6-Deoxy)-β-Cyclodextrin (cas: 53784-83-1Electric Literature of C42H63Br7O28).

Heptakis(6-Bromo-6-Deoxy)-β-Cyclodextrin (cas: 53784-83-1) belongs to organobromine compounds. Bromo compounds are employed in a variety of metal-catalyzed coupling reactions. They are also ideal candidates for the synthesis of Grignard reagents that have wide-applicability in organic synthesis. alpha-Bromoesters are employed in the Reformatsky reaction for the synthesis of beta-hydroxyesters. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Electric Literature of C42H63Br7O28

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tago, Keiko et al. published their research in Perkin 1 in 2000 | CAS: 28322-40-9

Isopentyltriphenylphosphonium bromide (cas: 28322-40-9) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon–bromine bond is electrophilic in nature. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Synthetic Route of C23H26BrP

A practical total synthesis of plaunotol via highly Z-selective Wittig olefination of α-acetal ketones was written by Tago, Keiko;Arai, Masami;Kogen, Hiroshi. And the article was included in Perkin 1 in 2000.Synthetic Route of C23H26BrP This article mentions the following:

Plaunotol, a known antiulcer drug, is the most important component of the Thai folk medicinal plant, Plau-noi, which has remarkable antipeptic ulcer activity. Recently, it was found that plaunotol has antibacterial activity against Helicobacter pylori, a causative agent in gastric ulcers and gastric adenocarcinoma, for example. In the investigation of the practical synthesis of plaunotol, the authors have developed an efficient method for stereoselective synthesis of trisubstituted olefins via a Z-selective Wittig reaction. The olefination of readily available aliphatic α-acetal ketones with triphenylphosphonium salts in the presence of a potassium base and 18-crown-6 ether proceeded with excellent Z-selectivity. The Z-selective olefination provides a useful method for the construction of a range of trisubstituted olefin moieties; the practical and stereoselective total synthesis of plaunotol was achieved via this Wittig reaction. In the experiment, the researchers used many compounds, for example, Isopentyltriphenylphosphonium bromide (cas: 28322-40-9Synthetic Route of C23H26BrP).

Isopentyltriphenylphosphonium bromide (cas: 28322-40-9) belongs to organobromine compounds. Many of the organo bromine compounds are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5) and hence the carbon in a carbon–bromine bond is electrophilic in nature. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Synthetic Route of C23H26BrP

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Jang, Seokhoon et al. published their research in Synthetic Metals in 2018 | CAS: 96761-85-2

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Name: 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl

Pyrimidine based hole-blocking materials with high triplet energy and glass transition temperature for blue phosphorescent OLEDs was written by Jang, Seokhoon;Han, Si Hyun;Lee, Jun Yeob;Lee, Youngu. And the article was included in Synthetic Metals in 2018.Name: 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl This article mentions the following:

New hole-blocking materials (HBMs), mPyrPPB and pPPyrPB, consisting of pyrimidine and phenylene segments for high-performance blue phosphorescent OLEDs were designed and synthesized. The thermal, electrochem., and optical properties of mPyrPPB and pPPyrPB were systemically studied. The Tg values of mPyrPPB and pPPyrPB were 118 and 137°, resp. The triplet energy and HOMO energy level of mPyrPPB were 2.77 eV and -6.86 eV, resp., indicating that it had sufficiently high triplet energy and deep HOMO energy level for the hole-blocking layer (HBL) in blue phosphorescent OLED devices. All the meta conjugation of mPyrPPB mol. structure effectively prevented π-electron delocalization and thus increased the triplet energy and electron transport property. MPyrPPB exhibited higher electron-transporting property than pPPyrPB because mPyrPPB possessed effective intermol. H bonds. When mPyrPPB was used as a HBM for a blue phosphorescent OLED device, external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) values effectively increased to 16.4%, 36.7 cd/A, and 13.4 lm/W, resp. Compared to the reference device without HBM, EQE, CE, and PE increased by 38%, 35%, and 54%, resp., mainly due to the confinement of triplet excitons and holes and improved electron-transporting ability. In the experiment, the researchers used many compounds, for example, 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2Name: 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl).

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Organo bromine compounds are versatile compounds and are widely used in diverse fields. Organo bromine derivatives are used in the dye sector, as an indicator in analytical chemistry (Bromothymol blue is a popular indicator). The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.Name: 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Su, Shi-Jian et al. published their research in Advanced Materials (Weinheim, Germany) in 2008 | CAS: 96761-85-2

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.SDS of cas: 96761-85-2

Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs was written by Su, Shi-Jian;Chiba, Takayuki;Takeda, Takashi;Kido, Junji. And the article was included in Advanced Materials (Weinheim, Germany) in 2008.SDS of cas: 96761-85-2 This article mentions the following:

Two pyridine-containing triphenylbenzene derivatives of 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TpPyPB) with high electron mobility and high triplet energy level are designed and synthesized. Highly efficient blue and green phosphorescent OLEDs are achieved by using TmPyPB and TpPyPB as an electron-transport layer, resp. In the experiment, the researchers used many compounds, for example, 3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2SDS of cas: 96761-85-2).

3,3”-Dibromo-5′-(3-bromophenyl)-1,1′:3′,1”-terphenyl (cas: 96761-85-2) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. In the pharmaceutical industry organo bromine derivatives are used as sedatives, vasodilators, antiseptic agents, and anticancer agents.SDS of cas: 96761-85-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Akamanchi, K. G. et al. published their research in Pharmacy and Pharmacology Communications in 1999 | CAS: 35065-86-2

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Safety of 3-Bromophenyl acetate

Synthesis and in-vitro evaluation of platelet aggregation inhibitory activity of paeonol and its analogs was written by Akamanchi, K. G.;Padmawar, P. A.;Thatte, U. M.;Rege, N. N.;Dahanukar, S. A.. And the article was included in Pharmacy and Pharmacology Communications in 1999.Safety of 3-Bromophenyl acetate This article mentions the following:

Paeonol (1-(2-hydroxy-4-methoxyphenyl)ethanone) and a series of substituted 1-(2-hydroxyphenyl)ethanone derivatives were synthesized and screened as inhibitors of platelet aggregation. The compounds with the greatest anti-platelet potential among the series tested were 1-(2,5-dihydroxyphenyl)ethanone (65.36% inhibition at 300 μM against 5 μM ADP), paeonol (36.31%), 1-(2-hydroxy-5-methoxyphenyl)ethanone (24.47%), 1-(2-hydroxy-5-nitrophenyl) ethanone (30.40%), and 1-(5-chloro-2-hydroxy-4-methylphenyl)ethanone (24.43%). In the experiment, the researchers used many compounds, for example, 3-Bromophenyl acetate (cas: 35065-86-2Safety of 3-Bromophenyl acetate).

3-Bromophenyl acetate (cas: 35065-86-2) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine.Safety of 3-Bromophenyl acetate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Matsuoka, Junpei et al. published their research in Chemistry – A European Journal in 2020 | CAS: 14425-64-0

1-(2-Bromoethyl)-4-methoxybenzene (cas: 14425-64-0) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.COA of Formula: C9H11BrO

Total Synthesis of Dictyodendrins A-F by the Gold-Catalyzed Cascade Cyclization of Conjugated Diyne with Pyrrole was written by Matsuoka, Junpei;Inuki, Shinsuke;Matsuda, Yuka;Miyamoto, Yoichi;Otani, Mayumi;Oka, Masahiro;Oishi, Shinya;Ohno, Hiroaki. And the article was included in Chemistry – A European Journal in 2020.COA of Formula: C9H11BrO This article mentions the following:

The total synthesis of dictyodendrins A-F was achieved by using the gold(I)-catalyzed annulation of a conjugated diyne with N-Boc-pyrrole for direct construction of the pyrrolo[2,3-c]carbazole scaffold. Late-stage functionalization of the resulting pyrrolo[2,3-c]carbazole to introduce various substituents provided divergent access to dictyodendrins. Some dictyodendrin analogs exhibited inhibitory activities toward CDK2/CycA2 and GSK3. In the experiment, the researchers used many compounds, for example, 1-(2-Bromoethyl)-4-methoxybenzene (cas: 14425-64-0COA of Formula: C9H11BrO).

1-(2-Bromoethyl)-4-methoxybenzene (cas: 14425-64-0) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. Many of the alkyl bromine derivatives are excellent alkylating agents since bromides are good leaving groups. Tribromides, like tetrabutylammonium tribromide, are used as a solid source of bromine. N-bromosuccimide (NBS) is used for the selective bromination of allylic bonds.COA of Formula: C9H11BrO

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Cioffi, Christopher L. et al. published their research in Journal of Medicinal Chemistry in 2020 | CAS: 82702-31-6

Methyl 3-bromo-4-fluorobenzoate (cas: 82702-31-6) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Application In Synthesis of Methyl 3-bromo-4-fluorobenzoate

Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities was written by Cioffi, Christopher L.;Muthuraman, Parthasarathy;Raja, Arun;Varadi, Andras;Racz, Boglarka;Petrukhin, Konstantin. And the article was included in Journal of Medicinal Chemistry in 2020.Application In Synthesis of Methyl 3-bromo-4-fluorobenzoate This article mentions the following:

Accumulation of cytotoxic lipofuscin bisretinoids may contribute to atrophic age-related macular degeneration (AMD) pathogenesis. Retinal bisretinoid synthesis depends on the influx of serum all-trans-retinol delivered via a tertiary retinol binding protein 4 (RBP4)-transthyretin (TTR)-retinol complex. We previously identified selective RBP4 antagonists that dissociate circulating RBP4-TTR-retinol complexes, reduce serum RBP4 levels, and inhibit bisretinoid synthesis in models of enhanced retinal lipofuscinogenesis. However, the release of TTR by selective RBP4 antagonists may be associated with TTR tetramer destabilization and, potentially, TTR amyloid formation. We describe herein the identification of bispecific RBP4 antagonist-TTR tetramer kinetic stabilizers. Standout analog I possesses suitable potency for both targets, significantly lowers mouse plasma RBP4 levels, and prevents TTR aggregation in a gel-based assay. This new class of bispecific compounds may be especially important as a therapy for dry AMD patients who have another common age-related comorbidity, senile systemic amyloidosis, a nongenetic disease associated with wild-type TTR misfolding. In the experiment, the researchers used many compounds, for example, Methyl 3-bromo-4-fluorobenzoate (cas: 82702-31-6Application In Synthesis of Methyl 3-bromo-4-fluorobenzoate).

Methyl 3-bromo-4-fluorobenzoate (cas: 82702-31-6) belongs to organobromine compounds. Most of the natural organobromine compounds are produced by marine organisms, and several brominated metabolites with antibacterial, antitumor, antiviral, and antifungal activity have been isolated from seaweed, sponges, corals, molluscs, and others. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.Application In Synthesis of Methyl 3-bromo-4-fluorobenzoate

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mundal, Devon A. et al. published their research in Nature Chemistry in 2010 | CAS: 28322-40-9

Isopentyltriphenylphosphonium bromide (cas: 28322-40-9) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Quality Control of Isopentyltriphenylphosphonium bromide

Triflimide-catalysed sigmatropic rearrangement of N-allylhydrazones as an example of a traceless bond construction was written by Mundal, Devon A.;Avetta, Christopher T. Jr.;Thomson, Regan J.. And the article was included in Nature Chemistry in 2010.Quality Control of Isopentyltriphenylphosphonium bromide This article mentions the following:

The recognition of structural elements (i.e., retrons) that signal the application of specific chem. transformations is a key cognitive event in the design of synthetic routes to complex mols. Reactions that produce compounds without an easily identifiable retron, by way of either substantial structural rearrangement or loss of the atoms required for the reaction to proceed, are significantly more difficult to apply during retrosynthetic planning, yet allow for non-traditional pathways that may facilitate efficient acquisition of the target mol. A triflimide (Tf2NH)-catalyzed rearrangement of N-allylhydrazones has been developed that allows for the generation of a sigma bond between two unfunctionalized sp3 carbons in such a way that no clear retron for the reaction remains. This new ‘traceless’ bond construction displays a broad substrate profile and should open avenues for synthesizing complex mols. using non-traditional disconnections. In the experiment, the researchers used many compounds, for example, Isopentyltriphenylphosphonium bromide (cas: 28322-40-9Quality Control of Isopentyltriphenylphosphonium bromide).

Isopentyltriphenylphosphonium bromide (cas: 28322-40-9) belongs to organobromine compounds. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Quality Control of Isopentyltriphenylphosphonium bromide

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Wang, Zhisong et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 6515-58-8

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Application In Synthesis of 3-(Bromomethyl)benzoic acid

Structure-Based Design of Highly Potent Toll-like Receptor 7/8 Dual Agonists for Cancer Immunotherapy was written by Wang, Zhisong;Gao, Yan;He, Lei;Sun, Shuhao;Xia, Tingting;Hu, Lu;Yao, Licheng;Wang, Liangliang;Li, Dan;Shi, Hui;Liao, Xuebin. And the article was included in Journal of Medicinal Chemistry in 2021.Application In Synthesis of 3-(Bromomethyl)benzoic acid This article mentions the following:

Design and synthesis of a series of pyrido[3,2-d]pyrimidine-based toll-like receptor 7/8 dual agonists, e.g., I that exhibited potent and near-equivalent agonistic activities toward TLR7 and TLR8. In vitro, compounds significantly induced the secretion of IFN-α, IFN-γ, TNF-α, IL-1β, IL-12p40, and IP-10 in human peripheral blood mononuclear cell assays. In vivo, compounds significantly suppressed tumor growth in CT26 tumor-bearing mice by remodeling the tumor microenvironment. Addnl., compounds markedly improved the antitumor activity of PD-1/PD-L1 blockade. These results demonstrated that TLR7/8 agonists held great potential as single agents or in combination with PD-1/PD-L1 blockade for cancer immunotherapy. In the experiment, the researchers used many compounds, for example, 3-(Bromomethyl)benzoic acid (cas: 6515-58-8Application In Synthesis of 3-(Bromomethyl)benzoic acid).

3-(Bromomethyl)benzoic acid (cas: 6515-58-8) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. When the molecular ion is detected, the bromine and chlorine isotope patterns are very distinct, but caution is to be exercised for certain mixed chlorinated/brominated compounds, which can look similar to homohalogen patterns.Application In Synthesis of 3-(Bromomethyl)benzoic acid

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary