Kolsaker, Per; Bailey, Philip S.; Dobinson, Frank; Kumar, Baldev published an article in 1964, the title of the article was Ozonation of 9,10-dihaloanthracenes.Product Details of 41819-13-0 And the article contains the following content:
Ozonation of 9,10-dibromoanthracene gave anthraquinone, 1,4-dibromo-2,3-naphthalenedicarboxylic acid, and 3,6-dibromo-1,2,4,5-benzenetetracarboxylic acid (dibromopyromellitic acid). Approx. 2 moles mol. oxygen was evolved per mole of anthraquinone produced when 2 equivalents or less of ozone was used. Bromine was also a product and reacted with ozone when more than 2 equivalents was employed. There is a definite, though not so great as originally reported, solvent effect involving the competition between atom and bond attack of ozone. Similar results were obtained with 9,10-dichloroanthracene, except that there was little, if any, solvent effect. Mechanisms are discussed. The experimental process involved the reaction of 3,6-Dibromobenzene-1,2,4,5-tetracarboxylic acid(cas: 41819-13-0).Product Details of 41819-13-0
3,6-Dibromobenzene-1,2,4,5-tetracarboxylic acid(cas:41819-13-0) belongs to organobromine compounds. Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine is more electronegative than carbon (2.9 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents. Product Details of 41819-13-0
Referemce:
Bromide – Wikipedia,
bromide – Wiktionary