Garcia de Jalon, Elvira team published research in Dyes and Pigments in 2021 | 4224-70-8

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 4224-70-8, formula is C6H11BrO2, Name is 6-Bromohexanoic acid, Reference of 4224-70-8

Garcia de Jalon, Elvira;Ruiz de Garibay, Gorka;Haug, Bengt Erik;McCormack, Emmet research published 《 CytoCy5S, a compound of many structures. in vitro and in vivo evaluation of four near-infrared fluorescent substrates of nitroreductase (NTR)》, the research content is summarized as follows. CytoCy5S, a quenched, red-shifted fluorescent probe, has been used to exploit the imaging potential of the nitroreductase (NTR) reporter gene platform. Its use has been reported in a number of publications, however there are discrepancies in both the reported structure and its physicochem. properties. Herein, we aim to highlight these discrepancies and to define the best candidate of the four substrates under study for preclin. work in NTR reporting by optical applications. We report the synthesis, purification and characterization of four NTR substrates, including alternately described structures currently referred by the name CytoCy5S. A comparative NTR enzymic assay was performed to assess the spectroscopic characteristics of the different reductively activated probes. The NTR expressing triple-neg. breast carcinoma cell line, MDA-MB-231 NTR+, was employed to compare, both in vitro and in vivo, the suitability of these fluorescent probes as reporters of NTR activity. Comparison of the reporting properties was achieved by flow cytometry, fluorescence microscopy and optical imaging, both in vivo and ex vivo. This study evaluated the different spectroscopic and biol. characteristics of the four substrates and concluded that substrate 1 presents the best features for oncol. in vivo preclin. optical imaging.

Reference of 4224-70-8, 6-bromohexanoic acid is an organobromine compound comprising hexanoic acid having a bromo substituent at the 6-position. It derives from a hexanoic acid.
6-Bromohexanoic acid is a useful research compound. Its molecular formula is C6H11BrO2 and its molecular weight is 195.05 g/mol. The purity is usually 95%.
6-Bromohexanoic acid is useful for the preparation of anti-CTLA4 compounds as antitumor agents.
6-Bromohexanoic acid is a fatty acid that has been shown to be an effective agent for the treatment of cancer. It is used in gene therapy to inhibit the growth of cancer cells by binding to and then activating transcription factors. 6-Bromohexanoic acid can also be used as a chemotherapeutic agent and has been shown to cause apoptosis in monoclonal antibody-treated cells. 6-Bromohexanoic acid has pharmacokinetic properties that are similar to those of other fatty acids. The reaction solution was found to have high chemical stability, which may be due to the presence of nitrogen atoms. This reaction solution was found to adsorb onto the surface of monoclonal antibodies and cell culture, altering their properties., 4224-70-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary