Xu, Qing-Hao team published research in Angewandte Chemie, International Edition in 2022 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Formula: C8H9BrO2

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Formula: C8H9BrO2.

Xu, Qing-Hao;Wei, Li-Pu;Xiao, Bin research published 《 Alkyl-GeMe3: Neutral Metalloid Radical Precursors upon Visible-Light Photocatalysis》, the research content is summarized as follows. Single-electron transfer (SET) oxidation of ionic hypervalent complexes, in particular alkyltrifluoroborates (Alkyl-BF3) and alkylbis(catecholato)silicates (Alkyl-Si(cat)2), have contributed substantially to alkyl radical generation compared to alkali or alk. earth organometallics because of their excellent activity-stability balance. Herein, another proposal is reported by using neutral metalloid compounds, Alkyl-GeMe3, as radical precursors. Alkyl-GeMe3 shows comparable activity to that of Alkyl-BF3– and Alkyl-Si(cat)2– in radical addition reactions. Moreover, Alkyl-GeMe3 is the first successful group 14 tetraalkyl nucleophile in nickel-catalyzed cross-coupling. Meanwhile, the neutral nature of these organogermanes offset the limitation of ionic precursors in purification and derivatization. A preliminary mechanism study suggests that an alkyl radical is generated from a tetraalkylgermane radical cation with the assistance of a nucleophile, which may also result in the development of more non-ionic alkyl radical precursors with a metalloid center.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Formula: C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary