Li, YiXiang team published research in Organic Electronics in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., HPLC of Formula: 1575-37-7

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine, HPLC of Formula: 1575-37-7

Li, YiXiang;Wu, Yong;Qin, ZhengSheng;Wang, Gang;Wu, Yuan;Wang, DongDong;Zhang, YiFan;Wang, XinYe;Wu, ChuanMing;Dong, HuanLi research published 《 Substitution effect on solid parking motif and luminescence of diphenylfuro[2,3-b]quinoxaline isomers》, the research content is summarized as follows. The organic mols. combining light-emitting and charge-transporting property are highly expected. We designed and synthesized a pair of isomers, 2,6-diphenylfuro[2,3-b]quinoxaline (26dPFQ) and 2,7-diphenylfuro[2,3-b]quinoxaline (27dPFQ), and investigated effect of changing substituent position on mol. packing motif, conducting and luminescence feature of resulting materials. In CH2Cl2 solution, both isomers, 26dPFQ and 27dPFQ, emit deep blue light with a wavelength of 422 nm and shows photoluminance quantum yield (PLQY) of 58.9% and 48.7%, resp. In crystal, the 26dPFQ employs H-type packing motif and retains blue florescent emission with low PLQY (10.0%) while 27dPFQ adopts J-aggregated packing motif and shows enhanced green fluorescent emission with a PLQY of 55.0%. The organic light-emitting devices for both emitters show deep blue emission, the EL peak at 410 nm for 26dPFQ and 424 nm for 27dPFQ, and resp. presents the maximum EQE of 1.2% and 1.0%. The 26dPFQ shows better charge transport capability over 27dPFQ. Our results suggested 2,6-substitution on furo[2,3-b]quinoxaline core are expected to afford such dual functional materials.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., HPLC of Formula: 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lei, Hong-Xu team published research in Journal of Molecular Structure in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Reference of 1575-37-7

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 1575-37-7, formula is C6H7BrN2, The most pervasive is the naturally produced bromomethane. Reference of 1575-37-7

Lei, Hong-Xu;Zhang, KaiLi;Qin, Yu-Xi;Dong, Rong-Jian;Chen, De-Zhan;Zhou, HaiFeng;Sheng, Xie-Huang research published 《 A quantum-chemical approach to develop tetrahydroquinoxaline as potent ferroptosis inhibitors》, the research content is summarized as follows. Ferroptosis is a recently characterized form of regulated necrosis with the iron-dependent accumulation of (phospho)lipid hydroperoxides (LOOH). It has attracted considerable attention for its putative involvement in diverse pathophysiol. processes, such as cardiovascular disease and neurodegeneration. Here we describe the discovery of tetrahydroquinoxaline, a novel scaffold of ferroptosis inhibitors based on quantum chem. methods. Tetrahydroquinoxaline deviates showed very good inhibition of ferroptosis, while being non cytotoxic for human cancer cells. And, the advantage of them is their small mol. weight (MW. = 148 Da) that can be coupled with other drugs to form multi-target drugs to better meet the treatment of complicated diseases.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Reference of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Li, Chenghao team published research in Organic Chemistry Frontiers in 2022 | 1575-37-7

HPLC of Formula: 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. HPLC of Formula: 1575-37-7.

Li, Chenghao;Zhang, Shuxin;Li, Shan;Feng, Yu;Fan, Qing-Hua research published 《 Ruthenium-catalyzed enantioselective hydrogenation of quinoxalinones and quinazolinones》, the research content is summarized as follows. An efficient Ru-catalyzed enantioselective hydrogenation of quinoxalinone and quinazolinone derivatives was successfully developed, provided a straightforward and facile access to chiral dihydroquinoxalinones and dihydroquinazolinones with excellent results (89-98% yields, up to 98% ee). Importantly, the key enantiopure dihydroquinoxalinone intermediate towards the synthesis of a bioactive BRD4 inhibitor was conveniently synthesized by this catalytic hydrogenation methodol.

HPLC of Formula: 1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Laurin, Corentine M. C. team published research in ACS Infectious Diseases in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Name: 4-Bromobenzene-1,2-diamine

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Name: 4-Bromobenzene-1,2-diamine.

Laurin, Corentine M. C.;Bluck, Joseph P.;Chan, Anthony K. N.;Keller, Michelle;Boczek, Andrew;Scorah, Amy R.;See, K. F. Larissa;Jennings, Laura E.;Hewings, David S.;Woodhouse, Fern;Reynolds, Jessica K.;Schiedel, Matthias;Humphreys, Philip G.;Biggin, Philip C.;Conway, Stuart J. research published 《 Fragment-Based Identification of Ligands for Bromodomain-Containing Factor 3 of Trypanosoma cruzi》, the research content is summarized as follows. The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophys. assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biol. of T. cruzi.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Name: 4-Bromobenzene-1,2-diamine

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kozlova, Arina team published research in European Journal of Medicinal Chemistry in 2022 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Related Products of 1575-37-7

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 1575-37-7, formula is C6H7BrN2, The most pervasive is the naturally produced bromomethane. Related Products of 1575-37-7

Kozlova, Arina;Thabault, Leopold;Dauguet, Nicolas;Deskeuvre, Marine;Stroobant, Vincent;Pilotte, Luc;Liberelle, Maxime;Van den Eynde, Benoit;Frederick, Raphael research published 《 Investigation of chalcogen bioisosteric replacement in a series of heterocyclic inhibitors of tryptophan 2,3-dioxygenase》, the research content is summarized as follows. Selenium is an underexplored element that can be used for bioisosteric replacement of lower mol. weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chem. scaffolds are needed to fully grasp this element′s potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres′ affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds′ lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chem. for the development of novel and distinctive drug candidates.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Related Products of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kozlova, Arina team published research in Journal of Medicinal Chemistry in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Application In Synthesis of 1575-37-7

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application In Synthesis of 1575-37-7.

Kozlova, Arina;Thabault, Leopold;Liberelle, Maxime;Klaessens, Simon;Prevost, Julien R. C.;Mathieu, Caroline;Pilotte, Luc;Stroobant, Vincent;Van den Eynde, Benoit;Frederick, Raphael research published 《 Rational Design of Original Fused-Cycle Selective Inhibitors of Tryptophan 2,3-Dioxygenase》, the research content is summarized as follows. Tryptophan 2,3-dioxygenase (TDO2) is a heme-containing enzyme constitutively expressed at high concentrations in the liver and responsible for L-tryptophan (L-Trp) homeostasis. Expression of TDO2 in cancer cells results in the inhibition of immune-mediated tumor rejection due to an enhancement of L-Trp catabolism via the kynurenine pathway. In the study herein, we disclose a new 6-(1H-indol-3-yl)-benzotriazole scaffold of TDO2 inhibitors developed through rational design, starting from existing inhibitors. Rigidification of the initial scaffold led to the synthesis of stable compounds displaying a nanomolar cellular potency and a better understanding of the structural modulations that can be accommodated inside the active site of hTDO2.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Application In Synthesis of 1575-37-7

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Komuraiah, Buduma team published research in Chemical Biology & Drug Design in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Recommanded Product: 4-Bromobenzene-1,2-diamine

Organic compounds having carbon bonded to bromine are called organic bromides. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Recommanded Product: 4-Bromobenzene-1,2-diamine.

Komuraiah, Buduma;Ren, Yichang;Xue, Mingming;Cheng, Binbin;Liu, Jin;Liu, Yao;Chen, Jianjun research published 《 Design, synthesis and biological evaluation of benz-fused five-membered heterocyclic compounds as tubulin polymerization inhibitors with anticancer activities》, the research content is summarized as follows. A series of benz-fused five-membered heterocyclic compounds such as I [R1 = H, Me, Br, etc.; R2 = H, Br, NH2, etc; X = O, S] were designed and synthesized as novel tubulin inhibitors targeting the colchicine binding site. Among them, compound I [R1 = Br, R2 = H, X = S] displayed the highest antiproliferative activity against four cancer cell lines. Compound I [R1 = Br, R2 = H, X = S] effectively inhibited tubulin polymerization in vitro. Further, compound I [R1 = Br, R2 = H, X = S] induced cell cycle arrest in G2/M phase. Finally, compound I [R1 = Br, R2 = H, X = S] inhibited the migration of cancer cells in a dose-dependent manner. In summary, these results suggested that compound I [R1 = Br, R2 = H, X = S] represented a new class of tubulin inhibitors deserving further investigation.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Recommanded Product: 4-Bromobenzene-1,2-diamine

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kong, Bo team published research in European Journal of Medicinal Chemistry in 2022 | 1575-37-7

Product Details of C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Product Details of C6H7BrN2.

Kong, Bo;Zhu, Zhaohong;Li, Hongmei;Hong, Qianqian;Wang, Cong;Ma, Yu;Zheng, Wan;Jiang, Fei;Zhang, Zhimin;Ran, Ting;Bian, Yuanyuan;Yang, Na;Lu, Tao;Zhu, Jiapeng;Tang, Weifang;Chen, Yadong research published 《 Discovery of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as novel and potent bromodomain and extra-terminal (BET) inhibitors with anticancer efficacy》, the research content is summarized as follows. As epigenetic readers, bromodomain and extra-terminal domain (BET) family proteins bind to acetylated-lysine residues in histones and recruit protein complexes to promote transcription initiation and elongation. Inhibition of BET bromodomains by small mol. inhibitors has emerged as a promising therapeutic strategy for cancer. Herein, we describe our efforts toward the discovery of a novel series of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as BET inhibitors. Intensive structural modifications led to the identification of compound 35f as the most active inhibitor of BET BRD4 with selectivity against BET family proteins. Further biol. studies revealed that compound 35f can arrest the cell cycle in G0/G1 phase and induce apoptosis via decreasing the expression of c-Myc and other proteins related to cell cycle and apoptosis. More importantly, compound 35f showed favorable pharmacokinetic properties and antitumor efficacy in MV4-11 mouse xenograft model with acceptable tolerability. These results indicated that BET inhibitors could be potentially used to treat hematol. malignancies and some solid tumors.

Product Details of C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kanekar, Deepali N. team published research in Chemical Papers in 2021 | 1575-37-7

COA of Formula: C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 1575-37-7, formula is C6H7BrN2, The most pervasive is the naturally produced bromomethane. COA of Formula: C6H7BrN2

Kanekar, Deepali N.;Badani, Purav M.;Kamble, Rajesh M. research published 《 Study of modulating opto-electrochemical properties in Suzuki coupled phenazine derivatives for organic electronics》, the research content is summarized as follows. In this work, five 3,6,11-trisubstituted-dibenzo[a,c]phenazine (2-6) derivatives were synthesized by employing Palladium-catalyzed Suzuki-Miyaura ‘C-C bond’ coupling reaction and characterized. Absorption spectra of 2-6 show the formation of charge-transfer complexes. Dyes exhibit blue-green fluorescence with emission maxima 434-506 nm in various solvents and neat solid film. To elucidate AIE phenomenon, photophys. properties of dye 2 and 3 in different THF/water mixture were studied. The HOMO and LUMO energy level were found in the range of – 6.38 to – 6.82 eV and – 3.67 to – 3.75 eV with an electrochem. bandgap of 2.71-3.08 eV. The HOMO and LUMO distribution in mols. were further studied by DFT/TD-DFT calculations Herein, characteristic blue emission, comparable energy levels with n-type materials, and good thermal stability of derivatives make them a potential candidate for their application in optoelectronics.

COA of Formula: C6H7BrN2, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., 1575-37-7.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kaur, Gurpreet team published research in Synthetic Communications in 2021 | 1575-37-7

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Name: 4-Bromobenzene-1,2-diamine

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 1575-37-7, formula is C6H7BrN2, Name is 4-Bromobenzene-1,2-diamine. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Name: 4-Bromobenzene-1,2-diamine.

Kaur, Gurpreet;Singh, Arvind;Kaur, Navdeep;Banerjee, Bubun research published 《 A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature》, the research content is summarized as follows. A mild, convenient, eco-friendly, general and practical approach was developed for the synthesis of a series of structurally diverse quinoxaline derivatives via the condensation reactions of various 1,2-diaminobenzene derivatives and 1,2-dicarbonyls such as phenanthrene-9,10-dione, acenaphthylene-1,2-dione or benzil using a catalytic amount of camphor sulfonic acid as an efficient, com. available, low cost, organo-catalyst in aqueous ethanol at room temperature Under the same optimized conditions we were also able to synthesis dibenzo[f,h]pyrido[2,3-b]quinoxaline as well as 10-bromoacenaphtho[1,2-b]pyrido[2,3-e]pyrazine from the reactions of pyridine-2,3-diamines and phenanthrene-9,10-dione or acenaphthylene-1,2-dione resp.

1575-37-7, 4-Bromo-1,2-diaminobenzene can be obtained from 1,2-diaminobenzene via acetylation followed by bromination and alkaline hydrolysis.
4-Bromobenzene-1,2-diamine, also known as 4-Bromobenzene-1,2-diamine, is a useful research compound. Its molecular formula is C6H7BrN2 and its molecular weight is 187.04 g/mol. The purity is usually 95%.
4-Bromo-1,2-diaminobenzene is a dye that is used in diagnostic
procedures to detect the presence of amide groups. 4-Bromo-1,2-diaminobenzene can be used as an inhibitor for cationic polymerization reactions. It also has tuberculostatic activity and inhibits the growth of Mycobacterium tuberculosis. This compound reacts with aniline to form a benzimidazole derivative that contains a reactive amine group. The reaction between this amine group and different electrophiles generates benzimidazole compounds with different properties that are useful in nucleophilic attack reactions. The reaction between 4-bromo-1,2-diaminobenzene and methyl ethyl sulfide produces a luminescent probe that can be used to detect hydrogen bonds., Name: 4-Bromobenzene-1,2-diamine

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary