Pla-Lopez, Alberto team published research in International Journal of Molecular Sciences in 2022 | 823-78-9

COA of Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., COA of Formula: C7H6Br2.

Pla-Lopez, Alberto;Castillo, Raquel;Cejudo-Marin, Rocio;Garcia-Pedrero, Olaya;Bakir-Laso, Mariam;Falomir, Eva;Carda, Miguel research published 《 Synthesis and Biological Evaluation of Small Molecules as Potential Anticancer Multitarget Agents》, the research content is summarized as follows. Twenty-six triazole-based derivatives were designed for targeting both PD-L1 (programmed death receptor ligand 1) and VEGFR-2 (vascular endothelial growth factor receptor 2). These compounds were synthesized and biol. evaluated as multitarget inhibitors of VEGFR-2, PD-L1 and c-Myc proteins. The antiproliferative activity of these mols. on several tumor cell lines (HT-29, A-549, and MCF-7) and on the non-tumor cell line HEK-293 was determined The effects on the abovementioned biol. targets were evaluated for some selected compounds Compound I, bearing a p-chlorophenyl group, showed better results than sorafenib in regard to the downregulation of VEGFR-2 and a similar effect to BMS-8 on both PD-L1 and c-Myc proteins. The antiangiogenic and antivascular activities of chloro derivatives were also established by endothelial microtube formation assay on Matrigel.

COA of Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Pokorny, Jan team published research in European Journal of Medicinal Chemistry in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Name: 1-Bromo-3-(bromomethyl)benzene

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Name: 1-Bromo-3-(bromomethyl)benzene.

Pokorny, Jan;Olejnikova, Denisa;Frydrych, Ivo;Liskova, Barbora;Gurska, Sona;Benicka, Sandra;Sarek, Jan;Kotulova, Jana;Hajduch, Marian;Dzubak, Petr;Urban, Milan research published 《 Substituted dienes prepared from betulinic acid – Synthesis, cytotoxicity, mechanism of action, and pharmacological parameters》, the research content is summarized as follows. A set of new substituted dienes were synthesized from betulinic acid by its oxidation to 30-oxobetulinic acid followed by the Wittig reaction. Cytotoxicity of all compounds was tested in vitro in eight cancer cell lines and two noncancer fibroblasts. Almost all dienes were more cytotoxic than betulinic acid. Four compounds had IC50 below 5μmol/L; I and II were selected for studies of the mechanism of action. Cell cycle anal. revealed an increase in the number of apoptotic cells at 5 x IC50 concentration, where activation of irreversible changes leading to cell death can be expected. Both I and II led to the accumulation of cells in the G0/G1 phase with partial inhibition of DNA/RNA synthesis at 1 x IC50 and almost complete inhibition at 5 x IC50. Interestingly, compound II at 5 x IC50 caused the accumulation of cells in the S phase. Higher concentrations of tested drugs probably inhibit more off-targets than lower concentrations Mechanisms disrupting cellular metabolism can induce the accumulation of cells in the S phase. Both compounds I and II trigger selective apoptosis in cancer cells via intrinsic pathway, which we have demonstrated by changes in the expression of the crucial apoptosis-related protein. Pharmacol. parameters of derivative I were superior to II, therefore I was the finally selected candidate for the development of anticancer drug.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Name: 1-Bromo-3-(bromomethyl)benzene

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Pradhan, Suman team published research in Organic Letters in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Reference of 823-78-9

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene, Reference of 823-78-9

Pradhan, Suman;Sharma, Vishali;Chatterjee, Indranil research published 《 Nitrosoarene-Catalyzed HFIP-Assisted Transformation of Arylmethyl Halides to Aromatic Carbonyls under Aerobic Conditions》, the research content is summarized as follows. A metal-free nucleophilic nitrosoarene catalysis accompanied by highly hydrogen-bond-donor (HBD) solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), organocatalytically converts arylmethyl halides to aromatic carbonyls such as ArC(O)R [Ar = Ph, 4-MeC6H4, 2-ClC6H4, etc.; R = H, Me, Ph, etc.]. This protocol offered an effective means to access a diverse array of aromatic carbonyls with good chemoselectivity under mild reaction conditions. The activation of arylmethyl halides by HFIP to generate stable carbocation and autoxidation of in situ generated hydroxylamine to nitrosoarene in the presence of atm. O2 were the keys to success.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Reference of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Pan, Ming team published research in Organic Letters in 2022 | 823-78-9

Reference of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 823-78-9, formula is C7H6Br2, The most pervasive is the naturally produced bromomethane. Reference of 823-78-9

Pan, Ming;Shao, Ying-Bo;Zhao, Qun;Li, Xin research published 《 Asymmetric Synthesis of N-N Axially Chiral Compounds by Phase-Transfer-Catalyzed Alkylations》, the research content is summarized as follows. A wide range of N-N axially chiral quinazolinone derivatives I (R1 = Ph, prop-1-en-2-yl, 3-chlorphenyl, etc.; R2 = Ph, 1-naphthyl, prop-1-ynyl, etc.; R3 = Ph, t-Bu, 3-bromophenyl, etc.; R4 = H, 7-Me, 6-I, 5-Cl, etc.) were prepared by phase-transfer catalysis in high yields with excellent stereoselectivities. Furthermore, the synthetic utility of the protocol was proved by large-scale reaction and transformation of the product. D. functional theory calculations provide insight into the mechanism.

Reference of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Naveen team published research in Steroids in 2020 | 823-78-9

Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Formula: C7H6Br2.

Naveen;Tittal, Ram Kumar;Ghule, Vikas D.;Yadav, Pinki;Lal, Kashmiri;Kumar, Ashwani research published 《 Synthesis, antimicrobial potency with in silico study of Boc-leucine-1,2,3-triazoles》, the research content is summarized as follows. A library of N-Boc (Boc = tert-butoxycarbonyl) protected Leucine-linked 1,4-disubstituted 1,2,3-triazoles was synthesized and fully characterized, in high yield via copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. In vitro antibacterial activity showed that compound (I) found to be more potent than the reference drug Ciprofloxacin (MIC: 0.0196μmol/mL) against tested bacterial strains S. entrica, B. subtilis, S. aureus, E. coli and P. auroginosa with MIC: 0.0148, 0.0074, 0.0148, 0.0074, and 0.0074μmol/mL, resp. and antifungal activity with MIC: 0.0148μmol/mL as compared to reference drug Fluconazole (MIC: 0.0102μmol/mL) against A. niger and C. albicans fungal strains. Further, the mol. docking study on I and its predecessor alkyne (II) by choosing E. coli topoisomerase II, DNA Gyrase (PDB ID: 1KZN) showed better binding with triazole than alkyne and these results were supported by DFT study using B3LYP/6-311G(d,p) basis set.

Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Miyata, Kota team published research in Tetrahedron Letters in 2020 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Related Products of 823-78-9

Organic compounds having carbon bonded to bromine are called organic bromides. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Related Products of 823-78-9.

Miyata, Kota;Narita, Airi;Fujisawa, Ryota;Roppongi, Makoto;Ito, Satoshi;Shingo, Tamesue;Oba, Toru research published 《 Synthesis of boronophenylalanine-like aza-amino acids for boron-containing azapeptide precursors》, the research content is summarized as follows. Aza-amino acids and an azapeptide with a boron-containing substituent were developed for the first time. We synthesized p-boronophenylalanine (BPA)-like aza-amino acid (aza-BPA) and its analogs in which the α-carbon of the peptide is replaced by nitrogen and the boronate ester is situated at the ortho, meta, or para position of the Ph group. The N- and C-terminals of aza-BPA were linked to α-amino acids to afford an α/aza/α-tripeptide. These compounds are expected to be used in boron neutron capture therapy, chemotherapy, and synthesis of functional materials.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Related Products of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Morshed, Mahmud T. team published research in Organic & Biomolecular Chemistry in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Synthetic Route of 823-78-9

Organic compounds having carbon bonded to bromine are called organic bromides. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Synthetic Route of 823-78-9.

Morshed, Mahmud T.;Nguyen, Hang T.;Vuong, Daniel;Crombie, Andrew;Lacey, Ernest;Ogunniyi, Abiodun D.;Page, Stephen W.;Trott, Darren J.;Piggott, Andrew M. research published 《 Semisynthesis and biological evaluation of a focused library of unguinol derivatives as next-generation antibiotics》, the research content is summarized as follows. In this study, authors report the semisynthesis and in vitro biol. evaluation of thirty-four derivatives of the fungal depsidone antibiotic, unguinol. Initially, the semisynthetic modifications were focused on the two free hydroxy groups (3-OH and 8-OH), the three free aromatic positions (C-2, C-4 and C-7), the butenyl side chain and the depsidone ester linkage. Fifteen first-generation unguinol analogs were synthesized and screened against a panel of bacteria, fungi and mammalian cells to formulate a basic structure activity relationship (SAR) for the unguinol pharmacophore. Based on the SAR studies, authors synthesized a further nineteen second-generation analogs, specifically aimed at improving the antibacterial potency of the pharmacophore. In vitro antibacterial activity testing of these compounds revealed that 3-O-(2-fluorobenzyl)unguinol and 3-O-(2,4-difluorobenzyl)unguinol showed potent activity against both methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MIC 0.25-1μg mL-1) and are promising candidates for further development in vivo.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Synthetic Route of 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mudshinge, Sagar R. team published research in Angewandte Chemie, International Edition in 2022 | 823-78-9

Recommanded Product: 1-Bromo-3-(bromomethyl)benzene, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Recommanded Product: 1-Bromo-3-(bromomethyl)benzene.

Mudshinge, Sagar R.;Yang, Yuhao;Xu, Bo;Hammond, Gerald B.;Lu, Zhichao research published 《 Gold (I/III)-Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides》, the research content is summarized as follows. The first C-SCF3/SeCF3 cross-coupling reactions using gold redox catalysis [(MeDalphos)AuCl], AgSCF3 or Me4NSeCF3, and organohalides ArI (Ar = Ph, 4-bromophenyl, 2,6-dimethoxypyridin-3-yl, ec.), (E/Z)-RCH=CHI (R = C(O)OMe, Ph, naphthalen-1-yl, etc.) and R1CCBr (R1 = Ph, 4-fluorophenyl, 4-nitrophenyl, etc.) as substrates are reported. The new methodol. enables a one-stop shop synthesis of aryl/alkenyl/alkynyl trifluoromethylthio- and selenoethers ArSCF3, (E/Z)-RCH=CHSCF3, R1CCSCF3, and RSeCF3 with a broad substrate scope (>60 examples with up to 97% isolated yield). The method is scalable, and its robustness is evidenced by the late-stage functionalization of various bioactive mols., which makes this reaction an attractive alternative in the synthesis of trifluoromethylthio- and selenoethers for pharmaceutical and agrochem. research and development.

Recommanded Product: 1-Bromo-3-(bromomethyl)benzene, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mirzazadeh, Roghieh team published research in Archiv der Pharmazie (Weinheim, Germany) in 2021 | 823-78-9

COA of Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. COA of Formula: C7H6Br2.

Mirzazadeh, Roghieh;Asgari, Mohammad S.;Barzegari, Ebrahim;Pedrood, Keyvan;Mohammadi-Khanaposhtani, Maryam;Sherafati, Maedeh;Larijani, Bagher;Rastegar, Hossein;Rahmani, Hojjat;Mahdavi, Mohammad;Taslimi, Parham;Uc, Eda M.;Gulcin, Ilhami research published 《 New quinoxalin-1,3,4-oxadiazole derivatives: Synthesis, characterization, in vitro biological evaluations, and molecular modeling studies》, the research content is summarized as follows. A new series of quinoxalin-1,3,4-oxadiazole derivatives I [R = H, 4-F, 2-Br, etc.] was synthesized and evaluated against some metabolic enzymes including human carbonic anhydrase (hCA) isoenzymes I and II (carbonic anhydrases I and II), cholinesterase (acetylcholinesterase and butyrylcholinesterase), and α-glucosidase. Obtained data revealed that all the synthesized compounds were more potent as compared with the used standard inhibitors against studied target enzymes. Among the synthesized compound I [R = 4-F] against hCA I, compound I [R = 4-Cl] against hCA II, compound I [R = 3-F] against acetylcholinesterase and butyrylcholinesterase and compound I [R = 3-Br] against α-glucosidase were the most potent compounds with inhibitory activity around 1.8- to 7.37-fold better than standard inhibitors. Furthermore, docking studies of these compounds were performed at the active site of their target enzymes.

COA of Formula: C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Mariki, Ali akbar team published research in Polycyclic Aromatic Compounds in | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Recommanded Product: 1-Bromo-3-(bromomethyl)benzene

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Recommanded Product: 1-Bromo-3-(bromomethyl)benzene.

Mariki, Ali akbar;Anaeigoudari, Akbar;Zahedifar, Mahboobeh;Pouramiri, Behjat;Ayati, Adileh;Lotfi, Safa research published 《 Design, Green Synthesis, and Biological Evaluation of New Substituted Tetrahydropyrimidine Derivatives as Acetylcholinesterase Inhibitors》, the research content is summarized as follows. A series of novel tetrahydropyrimidin-4-yl pyridine derivatives I (Ar = Bn, 2-chlorobenzyl, 2,4-dimethylbenzyl, etc.) have been designed and synthesized as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The in vitro studies showed that all the synthesized derivatives I showed significant BChE inhibitory activity more potent than donepezil as the standard (IC50 values less than 0.1 μM). All the target compounds I demonstrated good AChE inhibitory effects comparable with donepezil as the reference drug with IC50 values ranging from 0.08 to 0.1 μM. The best results were obtained by 4-Me substituted derivative I (Ar = 4-Me benzyl) with IC50 value of 0.082 μM which was comparable with AChE inhibitory effects of donepezil (IC50 = 0.079 μM).

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., Recommanded Product: 1-Bromo-3-(bromomethyl)benzene

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary