Lu, Biao team published research in Journal of Medicinal Chemistry in 2021 | 402-49-3

Product Details of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Product Details of C8H6BrF3.

Lu, Biao;Liu, Dong;Gui, Bin;Gou, Jun;Dong, Huaide;Hu, Qiyue;Feng, Jun;Mao, Yuchang;Shen, Xiaodong;Wang, Shenglan;Zhang, Caihua;Shen, Ru;Yan, Yinfa;Chen, Lei;Wang, Huiyun;Li, Di;Zhang, Jiayin;Zhang, Minsheng;Zhang, Rumin;Bai, Chang;He, Feng;Tao, Weikang;Liu, Suxing research published 《 Discovery of 2-(Ortho-Substituted Benzyl)-Indole Derivatives as Potent and Orally Bioavailable RORγ Agonists with Antitumor Activity》, the research content is summarized as follows. RORγ is a dual-functional drug target, which involves not only induction of inflammation but also promotion of cancer immunity. The development of agonists of RORγ promoting Th17 cell differentiation could provide a novel mechanism of action (MOA) as an immune-activating anticancer agent. Herein, we describe new 2-(ortho-substituted benzyl)-indole derivatives as RORγ agonists by scaffold hopping based on clin. RORγ antagonist VTP-43742. Interestingly, subtle structural differences of the compounds led to the opposite biol. MOA. After rational optimization for structure-activity relationship and pharmacokinetic profile, we identified a potent RORγ agonist compound 17 (I) that was able to induce the production of IL-17 and IFNγ in tumor tissues and elicit antitumor efficacy in MC38 syngeneic mouse colorectal tumor model. This is the first comprehensive work to demonstrate the in vivo antitumor efficacy of an RORγ agonist.

Product Details of C8H6BrF3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Pingping team published research in Langmuir in 2021 | 2576-47-8

HPLC of Formula: 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Organic compounds having carbon bonded to bromine are called organic bromides. HPLC of Formula: 2576-47-8.

Lu, Pingping;He, Shuai;Zhou, Yue;Zhang, Yongmin research published 《 Oxidation-Induced Breakage of the Imine Bond and Aggregate Transition in a Se-Containing Dynamic Covalent Surfactant》, the research content is summarized as follows. Controlling the dynamic imine bonds upon a novel trigger except for pH and temperature is still a significant challenge. Here, a Se-containing imine-based dynamic covalent surfactant (HOBAB-BSeEA) was developed for the first time by mixing two precursors in situ: an asym. double-chain cationic surfactant bearing a formyl group at the terminal of one hydrophobic tail and a Se-containing amine (2-(benzylselanyl)ethan-1-amine) in order to confirm the effect of redox on the imine bonds. The imine bond in HOBAB-BSeEA can be regulated not only upon changing the pH as well as other common imine-based surfactants but also by oxidation The conversion efficiency of imine bonds is closely related with the degree of oxidation and pH. Complete oxidation can decrease the conversion efficiency from ~87 to 48%, which is comparable to the result of changing the pH from 10.0 to 7.0. With the formation and breaking of imine bonds, the surfactant can be reversibly switched between sym. and asym. structures, accompanied by a morphol. transition from vesicles to spherical micelles. Although oxidation cannot demolish all imine bonds, it can completely convert vesicles to spherical micelles, which is mainly ascribed to an increase in the polarity of the micellar microenvironment stemming from the oxidation of Se. However, this transition can only be achieved by reducing the pH to 5.0 instead of 7.0. Nile red loaded in HOBAB-BSeEA vesicles can be quickly, controllably, and step-by-step released upon oxidation stimulus but not pH. Understanding the mechanism of oxidation-induced breakage of imine bonds and disruption of vesicles would be useful in designing redox-responsive imine-based carriers that can unload cargoes according to the level of the local reactive oxygen species.

HPLC of Formula: 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lu, Xu team published research in Organic Letters in 2021 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Electric Literature of 20469-65-2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Electric Literature of 20469-65-2.

Lu, Xu;Kawazu, Ryohei;Song, Jizhou;Yoshigoe, Yusuke;Torigoe, Takeru;Kuninobu, Yoichiro research published 《 Regioselective C-H Trifluoromethylation of Aromatic Compounds by Inclusion in Cyclodextrins》, the research content is summarized as follows. A regioselective radical C-H trifluoromethylation of aromatic compounds was developed using cyclodextrins (CDs) as additives. The C-H trifluoromethylation proceeded with high regioselectivity to afford the product in good yield, even on the gram scale. In the presence of CDs, some substrates underwent a single trifluoromethylation selectively, whereas mixtures of single- and double-trifluoromethylated products were formed in the absence of the CD. 1H NMR experiments indicated that the regioselectivity was controlled by the inclusion of a substrate inside the CD cavity.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Electric Literature of 20469-65-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Luo, Feihua team published research in Tetrahedron Letters in 2021 | 585-76-2

Synthetic Route of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic compounds having carbon bonded to bromine are called organic bromides. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Synthetic Route of 585-76-2.

Luo, Feihua;He, Shuhua;Gou, Quan;Chen, Jinyang;Zhang, mingzhong research published 《 Palladium-catalyzed ortho-C-H hydroxylation of benzoic acids》, the research content is summarized as follows. A simple Pd(OAc)2 catalyzed ortho-hydroxylation of benzoic acids using TBHP as the sole oxidant was explored. This protocol featured relatively broad substrate scope and operational simplicity. The compatibility of ortho-substituted substrates was an effective complement to the previous ortho-hydroxylation reaction.

Synthetic Route of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ma, Lie team published research in Desalination in 2021 | 2576-47-8

2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., HPLC of Formula: 2576-47-8

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. HPLC of Formula: 2576-47-8.

Ma, Lie;Zhang, Chi;Lin, Saisai;Chen, Shengfu;Yao, Zhikan;Sun, Zhilin;Gao, Congjie;Zhang, Lin research published 《 Enhancing antifouling property of reverse osmosis membranes via surface tethered with the aminated cation of ionic liquids》, the research content is summarized as follows. The elec. neutrality of ionic liquids (ILs) was exploited to enhance the antifouling property of polyamide (PA) reverse osmosis (RO) membranes in this work. We solely tethered the aminated imidazolium cation of ILs [AVIM] Br onto the top-surface of PA RO membranes via mild amidation. The mol. simulation results confirmed that the tethered imidazolium cation and the dissociated bromine anion were stably existed in the form of ion pairs on PA RO membrane surface. In virtue of the elec. neutrality of these ion pairs, the ionic-solvation induced hydration layer formed in ILs above the modified membrane surface was thick and evenly distributed, similar to that formed in conventionally electroneutral zwitterion antifouling materials. Thereby, the cation-tethered membrane surface intuitively achieved balanced charge and strong hydrophilicity, and stably exhibited low protein adsorption and excellent antifouling behaviors to diverse foulants, even when the imidazolium cation was paired with anions of different mol. size. Meanwhile, the typical ridge-and-valley surface morphol. for PA RO membrane was well preserved due to the mild modification condition, and thereby harvested satisfactory separation performance. The integration of high performance, abundant ILs and mild conditions was expected to expand the application of superb antifouling materials in a variety of biofouling areas.

2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., HPLC of Formula: 2576-47-8

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ma, Teng team published research in Chinese Journal of Chemistry in | 20469-65-2

Name: 1-Bromo-3,5-dimethoxybenzene, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene, Name: 1-Bromo-3,5-dimethoxybenzene

Ma, Teng;Li, Xiao;Ping, Yuanyuan;Kong, Wangqing research published 《 Synthesis of gem-Difluoroalkenes via Ni-Catalyzed Three-Component Defluorinative Reductive Cross-Coupling of Organohalides, Alkenes and Trifluoromethyl Alkenes》, the research content is summarized as follows. Gem-Difluoroalkenes are considered ideal isosteres for metabolically susceptible carbonyl groups in modern drug discovery and medicinal chem. In addition, gem-difluoroalkenes are used as versatile precursors for the synthesis of difluoroalkylated compounds and monofluoroalkenes. Therefore, a great deal of effort has been devoted to developing efficient methods for their preparation The catalytic defluorinative functionalization of trifluoromethyl alkenes represents a useful strategy for the preparation of chiral gem-difluoroalkenes. However, most of these catalytic processes are still essentially limited to two-component defluorinative cross-couplings to form single C-C bonds. Due to the challenge of controlling chemoselectivity in the carbon-carbon bond forming events, three-component defluorinative cross-coupling involving multiple C-C bond formations has rarely been studied. Authors report a nickel-catalyzed three-component defluorinative reductive cross-coupling of organohalides, alkenes and trifluoromethyl alkenes. A variety of electron-rich and electron-deficient alkenes, as well as aryl and alkyl halides can efficiently participate in the formation of three-component cross-coupling products. This reaction proceeds under mild conditions and exhibits excellent functional group compatibility without requiring a pendant chelating group, providing a variety of functionalized gem-difluoroalkenes in good yields with excellent chemoselectivity.

Name: 1-Bromo-3,5-dimethoxybenzene, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ma, Xiaojun team published research in European Journal of Medicinal Chemistry in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Quality Control of 402-49-3

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Quality Control of 402-49-3.

Ma, Xiaojun;Sun, Nannan;Li, Xinwei;Fu, Wei research published 《 Discovery of novel N-sulfonamide-tetrahydroisoquinolines as potent retinoic acid receptor-related orphan receptor γt agonists》, the research content is summarized as follows. Cancer immunotherapy has become a research hotspot in recent years. A variety of targets were developed for small mol. immuno-oncol. agents, including retinoic acid-related orphan receptor gamma t (RORγt), chemokine receptor, stimulator of interferon genes (Sting), indoleamine 2,3-dioxygenase (IDO), toll-like receptors (TLR), etc. Among them, the retinoic acid receptor-related orphan receptor γt (RORγt) has gradually attracted more attention in these years. In particular, LYC-55716 (cintirorgon), a small mol. RORγt agonist developed by Lycera, has entered the phase II clin. study. In this work, starting from compound 7, compound 28 was obtained after 4 rounds of compound design, synthesis and SAR studies, which had an EC50 of 0.021 ± 0.002 μM in dual Fluorescence Resonance Energy Transfer (dual-FRET) assay and an EC50 of 0.021 ± 0.002 μM in mouse Th17 cell differentiation assay. It indicated that compound 28 had excellent RORγt agonistic activity and was expected to be developed as a new type of small mol. drug for cancer immunotherapy. The mol. dynamic simulation revealed that the agonist 28 formed a strong HYF triplet intramol. interaction to stabilize H12, which helped RORγt to form the protein-binding site and therefore made the receptor ready to recruit coactivator. When the inverse agonist s27 bound with RORγt, the steric hindrance between s27 and H479 caused the destruction of the HYF triplet, leading to the collapse of H12, thus the transcription function of RORγt was interrupted due to the failure of recruiting a coactivator mol. The triplet HYF in RORγt and the rigidity of 28 and s27 were identified to be the structural determinants for the functional switch of RORγt.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Quality Control of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ma, Yang-Tong team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Computed Properties of 244205-40-1

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 244205-40-1, formula is C6H6BBrO2, The most pervasive is the naturally produced bromomethane. Computed Properties of 244205-40-1

Ma, Yang-Tong;Lin, Chao;Huang, Xiao-Bo;Liu, Miao-Chang;Zhou, Yun-Bing;Wu, Hua-Yue research published 《 An (NH4)2S2O8-promoted cross-coupling of thiols/diselenides and sulfoxides for the synthesis of unsymmetrical disulfides/selenosulfides》, the research content is summarized as follows. An (NH4)2S2O8-promoted cross-coupling of thiols/diselenides and sulfoxides to construct unsym. disulfides/selenosulfides was disclosed. Control experiments demonstrate that (NH4)2S2O8 acts as an acid and an oxidant, while both ionic and radical routes were involved in the reaction. The KIE experiments reveal that C-H bond cleavage of sulfoxides was involved in the turnover-limiting step.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Computed Properties of 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Maegawa, Koshiro team published research in Organic Chemistry Frontiers in 2021 | 2576-47-8

HPLC of Formula: 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Organobromine compounds have fallen under increased scrutiny for their environmental impact., HPLC of Formula: 2576-47-8.

Maegawa, Koshiro;Tanimoto, Hiroki;Onishi, Seiji;Tomohiro, Takenori;Morimoto, Tsumoru;Kakiuchi, Kiyomi research published 《 Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides》, the research content is summarized as follows. Organic azides are still in the center of click chem. connecting two mols. However, taming the conjugation selectivity of azides is difficult without the help of bulky groups. Herein the unique reactivities of α-azido secondary acetamides (α-AzSAs) as minimal and unhindered azide structures is reported. The NH-azide interaction in the α-AzSAs, supposed by DFT calculations, allowed selective conjugation in the presence of other azido moieties, even without steric hindrance. With Staudinger-Bertozzi ligation, α-AzSAs underwent conjugation prior to the other primary alkyl azides. On the other hand, in propargyl cation-mediated triazole synthesis, other alkyl azides, including tertiary alkyl azides, underwent the conjugation faster than α-AzSAs. Authors also demonstrated site-selective integration of the functional components onto the diazide modular hubs.

HPLC of Formula: 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Liu, Jie team published research in Bioorganic Chemistry in 2021 | 585-76-2

Recommanded Product: 3-Bromobenzoic acid, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Recommanded Product: 3-Bromobenzoic acid.

Liu, Jie;Zhang, Guang-Yu;Zhang, Zhe;Li, Bo;Chai, Fei;Wang, Qi;Zhou, Zi-Dan;Xu, Ling-Ling;Wang, Shou-Kai;Jin, Zhen;Tang, You-Zhi research published 《 Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker》, the research content is summarized as follows. A class of pleuromutilin derivatives containing 1,3,4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chem. method to synthesize 1,3,4-oxadiazole derivatives Among these pleuromutilin derivatives, compound 133 (I) was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (-4.36 log10 CFU/mL reduction). Then, compound 133 (-1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (-0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Mol. docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1,3,4-oxadiazole might be further developed into novel antibiotics against MRSA.

Recommanded Product: 3-Bromobenzoic acid, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary