Liu, Li team published research in Bioorganic Chemistry in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., HPLC of Formula: 823-78-9

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. HPLC of Formula: 823-78-9.

Liu, Li;Chen, Yi;Zeng, Rui-Feng;Liu, Yun;Xie, Sai-Sai;Lan, Jin-Shuai;Ding, Yue;Yang, Yi-Ting;Yang, Jun;Zhang, Tong research published 《 Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson’s disease》, the research content is summarized as follows. The monoamine oxidase-B (MAO-B) inhibitors with neuroprotective effects are better for Parkinson’s disease (PD) treatment, due to the complicated pathogenesis of PD. To develop new hMAO-B inhibitors with neuroprotection, a novel series of 3,4-dihydrocoumarins was designed as selective and reversible hMAO-B inhibitors to treat PD. Most compounds showed potent and selective inhibition for hMAO-B over hMAO-A with IC50 values ranging from nanomolar to sub-nanomolar. Among them, compound I was the most potent hMAO-B inhibitor (IC50 = 0.37 nM) being about 20783-fold more active than iproniazid, and exhibited the highest selectivity for hMAO-B (SI > 270,270). Kinetic studies revealed that compound I was a reversible and competitive inhibitor of hMAO-B. Neuroprotective studies indicated that compound I could protect PC12 cells from the damage induced by 6-OHDA and rotenone. Besides, compound I did not exhibit acute toxicity at a dose up to 2500 mg/kg (po), and could cross the BBB in parallel artificial membrane permeability assay. More importantly, compound I was able to significantly prevent the motor deficits in the MPTP-induced PD model. These results indicate that compound I is an effective and promising candidate against PD.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., HPLC of Formula: 823-78-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Liu, Wenwu team published research in European Journal of Medicinal Chemistry in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Reference of 402-49-3

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Reference of 402-49-3.

Liu, Wenwu;Liu, Xin;Liu, Wenjie;Gao, Yaping;Wu, Limeng;Huang, Yaoguang;Chen, Huanhua;Li, Deping;Zhou, Lijun;Wang, Nan;Xu, Zihua;Jiang, Xiaowen;Zhao, Qingchun research published 《 Discovery of novel β-carboline derivatives as selective AChE inhibitors with GSK-3β inhibitory property for the treatment of Alzheimer’s disease》, the research content is summarized as follows. The natural product harmine, a representative β-carboline alkaloid from the seeds of Peganum harmala L. (Zygophyllaceae), possesses a broad spectrum of biol. activities. In this study, a novel series of harmine derivatives containing N-benzylpiperidine moiety were identified for the treatment of Alzheimer’s disease (AD). The results showed that all the derivatives possessed significant anti-acetylcholinesterase (AChE) activity and good selectivity over butyrylcholinesterase (BChE). In particular, compound ZLWH-23 exhibited potent anti-AChE activity (IC50 = 0.27μM) and selective BChE inhibition (IC50 = 20.82μM), as well as acceptable glycogen synthase kinase-3 (GSK-3β) inhibition (IC50 = 6.78μM). Mol. docking studies and mol. dynamics simulations indicated that ZLWH-23 could form stable interaction with AChE and GSK-3β. Gratifyingly, ZLWH-23 exhibited good selectivity for GSK-3β over multi-kinases and very low cytotoxicity towards SH-SY5Y, HEK-293T, HL-7702, and HepG2 cell lines. Importantly, ZLWH-23 displayed efficient reduction against tau hyperphosphorylation on Ser-396 site in Tau (P301L) 293T cell model. Collectively, harmine-based derivatives could be considered as possible drug leads for the development of AD therapies.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Reference of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lopez, Enol team published research in Advanced Synthesis & Catalysis in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., SDS of cas: 402-49-3

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., SDS of cas: 402-49-3.

Lopez, Enol;van Melis, Carlo;Martin, Raul;Petti, Alessia;de la Hoz, Antonio;Diaz-Ortiz, Angel;Dobbs, Adrian P.;Lam, Kevin;Alcazar, Jesus research published 《 C(sp3)-C(sp3) Bond Formation via Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions》, the research content is summarized as follows. A two-step transition metal-free methodol. for the C(sp3)-C(sp3) functionalization of saturated N-heterocyclic systems is disclosed. First, aminal derivatives are generated through the anodic oxidation of readily accessible carboxylic acids. Then, in the presence of BF3 · OEt2, iminium ions are unmasked and rapidly alkylated by organozinc reagents under flow conditions. Secondary, tertiary and quaternary carbon centers have been successfully assembled using this methodol. Such an approach is especially relevant to drug discovery since it increases C(sp3)-functionalities rapidly within a mol. framework. As proof of concept, our methodol. was applied to derivatization of peptides and an API.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., SDS of cas: 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Low, Choon Heng team published research in Inorganic Chemistry in 2022 | 244205-40-1

Synthetic Route of 244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid, Synthetic Route of 244205-40-1

Low, Choon Heng;Buss, Joshua A.;Agapie, Theodor research published 《 Molybdenum-Mediated Coupling of Carbon Monoxide to a C3 Product on a Single Metal Site》, the research content is summarized as follows. The synthesis and characterization of naphthalenediyl-diphosphine Mo complexes are reported. A novel dicarbonyl-Mo complex 3 converts to bis(siloxy)acetylene complex 5 upon reduction and treatment with a silylelectrophile, Me3SiCl. This process shows exclusive C-C coupling distinct from the phenylene-linked analog that undergoes C-O cleavage. Further CO catenation can be engendered from 5 under mild conditions providing metallacyclobutenone complex 6, with a C3O3 organic motif derived from CO. Differences in reactivity are assigned to the nature of the arene linker, where the naphthalenediyl fragment shows a propensity for η4 binding previously not observed for phenylene. Consistent with this hypothesis, a Mo precursor with a 1,3-cyclohexadienediyl-based linker was prepared In agreement, this species also shows exclusive formation of a bis(siloxy)acetylene complex and subsequent coupling of a 3rd CO mol.

Synthetic Route of 244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Liao, Lan-Shan team published research in European Journal of Medicinal Chemistry in 2022 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Application of C9H9BrO3

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Organic compounds having carbon bonded to bromine are called organic bromides. Application of C9H9BrO3.

Liao, Lan-Shan;Tan, Lin-Jie;Chen, Yin;Yang, Qi-Yuan;Choudhary, Muhammad Iqbal;Pan, Ying-Ming;Tang, Hai-Tao;Su, Gui-Fa;Liang, Hong;Chen, Zhen-Feng research published 《 One-pot synthesis of oxoaporphines as potent antitumor agents and investigation of their mechanisms of actions》, the research content is summarized as follows. An efficient one-pot reaction for the synthesis of oxoaporphine alkaloids has been developed. Twenty-three compounds of oxoaporphine alkaloids were prepared and assessed for their antitumor activities. Most compounds inhibited the growth of T-24 tumor cells in vitro. Particularly, I displayed the most potent activity with an IC50 value of 0.5μM, which was 19-fold more potent than the parent compound 4. The substitution at C3-position of oxoaporphine core by -NO2 significantly enhanced the anticancer activity. Mechanism studies indicated that II and I induced cell cycle arrest at G2/M phase; in contrast, III induced cell cycle arrest at the S phase. Increase of mitochondrial ROS/Ca2+ and decrease of MMP, accompanied by activation of caspase-3/9, were observed in T-24 cells after exposure to compounds I, II and III, suggesting that the mitochondrial pathway was involved in the induced apoptosis. Moreover, compound I effectively inhibited tumor growth in a mouse xenograft model bearing T-24.

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Application of C9H9BrO3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Librando, Ivy L. team published research in Catalysts in 2021 | 823-78-9

Name: 1-Bromo-3-(bromomethyl)benzene, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Name: 1-Bromo-3-(bromomethyl)benzene.

Librando, Ivy L.;Mahmoud, Abdallah G.;Carabineiro, Sonia A. C.;da Silva, M. Fatima C. Guedes;Geraldes, Carlos F. G. C.;Pombeiro, Armando J. L. research published 《 The catalytic activity of carbon-supported Cu(I)-phosphine complexes for the microwave-assisted synthesis of 1,2,3-triazoles》, the research content is summarized as follows. A set of Cu(I) complexes with 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo-[3.3.1]nonane (DAPTA) phosphine ligands viz. [CuX(κP-DAPTA)3] (1: X = Br; 2: X = I) and [Cu(μ-X)(κP-DAPTA)2]2 (3: X = Br; 4: X = I) were immobilized on activated carbon (AC) and multi-walled carbon nanotubes (CNT), as well as on these materials after surface functionalization. The immobilized copper(I) complexes showed favorable catalytic activity for the one-pot, microwave-assisted synthesis of 1,2,3-triazoles via the azide-alkyne cycloaddition reaction (CuAAC). The heterogenized systems with a copper loading of only 1.5-1.6% (weight/weight relative to carbon), established quant. conversions after 15 min, at 80°C, using 0.5 mol% of catalyst loading (relative to benzyl bromide). The most efficient supports concerning heterogenization were CNT treated with nitric acid and NaOH, and involving complexes 2 and 4 (in the same order, 2_CNT-ox-Na and 4_CNT-ox-Na). The immobilized catalysts can be recovered and recycled by simple workup and reused up to four consecutive cycles although with loss of activity.

Name: 1-Bromo-3-(bromomethyl)benzene, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Librando, Ivy L. team published research in Catalysts in 2022 | 823-78-9

Quality Control of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Organic compounds having carbon bonded to bromine are called organic bromides. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Quality Control of 823-78-9.

Librando, Ivy L.;Mahmoud, Abdallah G.;Carabineiro, Sonia A. C.;Guedes da Silva, M. Fatima C.;Maldonado-Hodar, Francisco J.;Geraldes, Carlos F. G. C.;Pombeiro, Armando J. L. research published 《 Heterogeneous Gold Nanoparticle-Based Catalysts for the Synthesis of Click-Derived Triazoles via the Azide-Alkyne Cycloaddition Reaction》, the research content is summarized as follows. A supported gold nanoparticle-catalyzed strategy has been utilized to promote a click chem. reaction for the synthesis of 1,2,3-triazoles via the azide-alkyne cycloaddition (AAC) reaction. While the advent of effective non-copper catalysts (i.e., Ru, Ag, Ir) has demonstrated the catalysis of the AAC reaction, addnl. robust catalytic systems complementary to the copper catalyzed AAC remain in high demand. Herein, Au nanoparticles supported on Al2O3, Fe2O3, TiO2 and ZnO, along with gold reference catalysts (gold on carbon and gold on titania supplied by the World Gold Council) were used as catalysts for the AAC reaction. The supported Au nanoparticles with metal loadings of 0.7-1.6% (weight/weight relative to support) were able to selectively obtain 1,4-disubstituted-1,2,3-triazoles in moderate yields up to 79% after 15 min, under microwave irradiation at 150°C using a 0.5-1.0 mol% catalyst loading through a one-pot three-component (terminal alkyne, organohalide and sodium azide) procedure according to the “click” rules. Among the supported Au catalysts, Au/TiO2 gave the best results.

Quality Control of 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lin, Cheng-Kun team published research in Synthesis in 2022 | 20469-65-2

Safety of 1-Bromo-3,5-dimethoxybenzene, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Safety of 1-Bromo-3,5-dimethoxybenzene.

Lin, Cheng-Kun;Hsieh, Bing-Han;Wu, Chun-Fu research published 《 Total Synthesis of Citreochlorol Monochloro Analogues via a Catalytically Enantioselective Carbonyl Allylation》, the research content is summarized as follows. An efficient synthetic route to citreochlorol analogs, halogenated polyketide secondary metabolites, was described. The key features were Krische’s enantioselective carbonyl allylation, IBr-promoted cyclization and regioselective epoxide opening. The importance of the route lies in accessing a versatile epoxy ether that enables the formation of citreochlorol monochloro derivatives

Safety of 1-Bromo-3,5-dimethoxybenzene, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Linciano, Pasquale team published research in ACS Chemical Neuroscience in 2020 | 2576-47-8

Electric Literature of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide, Electric Literature of 2576-47-8

Linciano, Pasquale;Sorbi, Claudia;Comitato, Antonella;Lesniak, Anna;Bujalska-Zadrozny, Magdalena;Pawlowska, Agata;Bielenica, Anna;Orzelska-Gorka, Jolanta;Kedzierska, Ewa;Biala, Grazyna;Ronsisvalle, Simone;Limoncella, Silvia;Casarini, Livio;Cichero, Elena;Fossa, Paola;Satala, Grzegorz;Bojarski, Andrzej J.;Brasili, Livio;Bardoni, Rita;Franchini, Silvia research published 《 Identification of a Potent and Selective 5-HT1A Receptor Agonist with In Vitro and In Vivo Antinociceptive Activity》, the research content is summarized as follows. Opioids are the gold standard drugs for the treatment of acute and chronic severe pain, although their serious side effects constitute a big limitation. In the search for new and safer drugs, 5-HT1AR agonists are emerging as potential candidates in pain relief therapy. In this work, we evaluated the affinity and activity of enantiomers of the two newly synthesized, potent 5-HT1AR agonists N-[(2,2-diphenyl-1,3-dioxolan-4-yl)methyl]-2-[2-(pyridin-4-yl)phenoxy]ethan-1-ammonium hydrogenoxalate (rac-1) and N-((2,2-diphenyl-1,3-dioxolan-4-yl)methyl)-2-(2-(1-methyl-1H-imidazol-5-yl)phenoxy)ethan-1-ammonium hydrogenoxalate (rac-2) in vitro and in vivo. The role of chirality in the interaction with 5-HT1AR was evaluated by mol. docking. The activity of the rac-1 was tested in mouse models of acute pain (hot plate) and severe tonic nociceptive stimulation (intraplantar formalin test). Rac-1 was active in the formalin test with a reduction in paw licking in both phases at 10 mg/kg, and its effect was abolished by the selective 5-HT1AR antagonist, WAY-100635. The eutomer (S)-1, but not the racemate, was active during the hot plate test at 10 and 20 mg/kg, and this effect was abolished by 30 min treatment with WAY-100635 at 30 min. Similarly to 8-OH-DPAT, (S)-1 evoked a slow outward current and depressed spontaneous glutamatergic transmission in superficial dorsal horn neurons, more effectively than rac-1. The eutomer (S)-1 showed promising developability properties, such as high selectivity over 5-HT subtypes, no interaction with the μ receptors, and low hepato- and cardiotoxicity. Therefore, (S)-1 may represent a potential candidate for the treatment of acute and chronic pain without having the adverse effects that are commonly associated with the classic opioid drugs.

Electric Literature of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lindell, Stephen D. team published research in Bioorganic & Medicinal Chemistry in 2021 | 585-76-2

Electric Literature of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Electric Literature of 585-76-2

Lindell, Stephen D.;Maechling, Simon;Klein, Robert;Freigang, Joerg;Laber, Bernd;Blanazs, Lisa;Leonhardt, Merisa;Haupt, Susanne;Petry, Thomas;Sabina, Richard L. research published 《 Mechanism and structure based design of inhibitors of AMP and adenosine deaminase》, the research content is summarized as follows. Inhibitors of the enzyme adenosine monophosphate deaminase (AMPD) show interesting levels of herbicidal activity. An enzyme mechanism-based approach has been used to design new inhibitors of AMPD starting from nebularine (6) and resulting in the synthesis of 2-deoxy isonebularine (16). This compound is a potent inhibitor of the related enzyme adenosine deaminase (ADA; IC50 16 nM), binding over 5000 times more strongly than nebularine. It is proposed that the herbicidal activity of compound 16 is due to 5-́phosphorylation in planta to give an inhibitor of AMPD. Subsequently, an enzyme structure-based approach was used to design new non-ribosyl AMPD inhibitors. The initial lead structure was discovered by in silico screening of a virtual library against plant AMPD. In a second step, binding to AMPD was further optimized via more detailed mol. modeling leading to 2-(benzyloxy)-5-(imidazo[2,1-f][1,2,4]triazin-7-yl)benzoic acid (36) (IC50 300 nM). This compound does not inhibit ADA and shows excellent selectivity for plant over human AMPD.

Electric Literature of 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary