Li, Gefei team published research in Advanced Optical Materials in 2022 | 2576-47-8

Quality Control of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide, Quality Control of 2576-47-8

Li, Gefei;Zhang, Yong;Wang, Wenhui;Gao, Lei;Ren, Yukun;Che, Junyan;Mo, Chunjing;Liu, Hongwei;Zhao, Weijie;Lu, Junpeng;Ni, Zhenhua research published 《 Correlated Dynamics of Free and Self-Trapped Excitons and Broadband Photodetection in BEA2PbBr4 Layered Crystals》, the research content is summarized as follows. Self-trapped excitons (STEs) exert a profound impact on the optical properties and device applications of 2D halide perovskites. Particularly distinct exciton self-trapping and detrapping processes can facilitate the intelligent design of perovskite optoelectronic devices with emerging functionalities. Thus, a comprehensive understanding and regulation of exciton trapping and detrapping dynamics are highly desired. Herein, the authors report a 2D lead halide perovskite (BEA2PbBr4 where BEA is 2-bromine ethylamine) with exceptional broadband photoluminescence (PL), which originates from multiple STE states. In particular, the unique energy-level configuration of STEs with respect to free excitons is revealed by exploiting optical spectroscopy. Consequently, these distinct phenomena empower the broadband photodetection capability of BEA2PbBr4 photodetectors over a wide range from UV to near-IR wavelengths. These results provide an essential understanding of the intriguing photophysics of STEs and shed new light on the future development of single-component perovskite broadband optoelectronic devices.

Quality Control of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kumar, Sourav team published research in Chemistry – An Asian Journal in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Reference of 402-49-3

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 402-49-3.

Kumar, Sourav;Kumar, Manoj;Bhalla, Vandana research published 《 Pyrazine Based Type-I Sensitizing Assemblies for Photoreduction of Cu(II) in ‘One-Pot Three-Component’ CuAAC Reaction Under Aerial Conditions》, the research content is summarized as follows. Photosensitizing assemblies of pyrazine derivative PDA have been developed which exhibit a high photostability, ‘lighted’ excited state, balanced redox potential, high transportation potential and activate oxygen via type-I pathway only. These PDA assemblies in combination with Cu(II) ions catalyze the CuAAC reaction via in situ reduction of Cu(II) ions without any reducing or stabilizing agent. The present protocol has wide substrate scope with recyclability of the catalytic system up to six catalytic cycles and is applicable to gram-scale synthesis.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Reference of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kurnia, Kiki Adi team published research in Journal of Molecular Liquids in 2021 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., SDS of cas: 244205-40-1

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 244205-40-1, formula is C6H6BBrO2, The most pervasive is the naturally produced bromomethane. SDS of cas: 244205-40-1

Kurnia, Kiki Adi;Setyaningsih, Widiastuti;Darmawan, Noviyan;Yuliarto, Brian research published 《 A comprehensive study on the impact of the substituent on pKa of phenylboronic acid in aqueous and non-aqueous solutions: A computational approach》, the research content is summarized as follows. The acid dissociation constant (pKa) is the fundamental physicochem. properties required to understand the structure and reactivity of boronic acid-based material as a sensor that identifies carbohydrates. However, there is a lack of comprehensive study on the impact of the substituent on the pKa of monosubstituted phenylboronic acid in aqueous and non-aqueous solutions In this work, extensive exptl. data on the pKa of monosubstituted phenylboronic acid in an aqueous solution was reviewed and compared in terms of accuracy. In addition, computational, were used to predict and investigate the impact of the substituent on the pKa for a series of monosubstituted phenylboronic acid in an aqueous solution at the mol. level. Good agreement was observed between predicted and literature pKa values of monosubstituted phenylboronic acid in the aqueous solution While some deviations exist, predominantly with fluorine-containing phenylboronic acid, the COSMO-RS model is proficient at predicting the pKa of boronic acid in an aqueous solution with the accuracy of ±1.5 pKa. Subsequently, the model was used to predict the pKa of boronic acid in the non-aqueous solution, which data is not available in the literature. Furthermore, an excellent relationship is observed between the acidity of para-substituted, and to some extent, meta-substituted phenylboronic acid with the at. charge of acidic hydrogen calculated using Natural Bond Orbital (NBO) Population Anal. In contrast, the steric hindrance and the existence of other mol. forces might influence the acidity of ortho-substituted phenylboronic acid. The gathered information in this work could be of benefit for the understanding of the acidity of the boronic acid-based materials not only as a sensor but also in many diverse areas.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., SDS of cas: 244205-40-1

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Kushawaha, Ajay Kishor team published research in Tetrahedron in 2021 | 585-76-2

Formula: C7H5BrO2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Formula: C7H5BrO2.

Kushawaha, Ajay Kishor;Jaiswal, Arvind Kumar;Pandey, Shubham;Sashidhara, Koneni V. research published 《 A simple and efficient oxidation of primary and secondary benzylamines to acids using table salt in aqueous medium》, the research content is summarized as follows. A novel, simple, efficient method for the oxidation of aromatic benzylamines RCH2NH2 (R = C6H5, 4-FC6H4, 2-thienyl, etc.), R1CH2NHCH2R1 (R1 = C6H5, 4-ClC6H4, 2-thienyl, etc.) and 4-OCH3C6H4CH2NHR2 (R2 = Me, Et, Pr, n-octyl, t-butyl) to corresponding acids RC(O)OH, R1C(O)OH and 4-methoxybenzoic acid using common table salt in aqueous medium has been described. Oxidation of benzylamine was achieved by using NaCl (20 mol%) as a catalyst, NaOH (4 equiv) and TBHP (5 equiv) as oxidant, in moderate to good yields (34-84%). Control experiments revealed that in situ generated ClO2 ion is the active form of the catalyst. This methodol. can also be scaled up for easy accessibility to the industrially important terephthalic acid as well. This investigation provided a facile entry of various primary as well as secondary benzylamines with wide range of functional group tolerance.

Formula: C7H5BrO2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lalvani, Khushbu K. team published research in Molecular Crystals and Liquid Crystals in 2022 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Electric Literature of 5392-10-9

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Electric Literature of 5392-10-9.

Lalvani, Khushbu K.;Socha, Bhavesh N.;Patel, Urmila H.;Gandhi, Sahaj;Alalawy, Mohammed Dawood;Barot, V. M.;Patel, Mukesh research published 《 Synthesis, crystallographic investigation, DFT studies and Hirshfeld surface analysis of novel bromo hydrazine derivative: (E)-2-(2-bromo-4,5-dimethoxybenzilidene)-1-(4,5-dimethoxy-2-methylphenyl)-1-hydroxyhydrazine》, the research content is summarized as follows. A novel bromo hydrazine derivative: (E)-2-(2-bromo-4,5-dimethoxybenzilidene)-1-(4,5-dimethoxy-2-methylphenyl)-1-hydroxyhydrazine is synthesized and characterized by different relevant techniques. The optical bonding conformed using 1H NMR spectroscopic and Uv-vis studies. The crystallog. data confirmed that the bromo hydrazine derivative crystalizes in monoclinic space group P21/n and consists of bromo dimethoxy Ph ring and Me dimethoxy Ph ring interlinked to each other via hydrazide moiety. The mol. geometry, HOMO-LUMO (frontier MO) energies, Mol. electrostatic potential (MEP), MPA (Mulliken population anal.), NBO (natural bond orbital), hypercharge polarizability of the title compound has been explored using D. Functional Theory (DFT) calculation via B3LYP method with LAV2P** basis set. Moreover, to visualize the intermol. interactions and their distribution over the crystal structure, Hirshfeld surfaces and 3D energy framework analyses have been investigated using Crystal Explorer 17.5. In the absence of conventional forces, the weak but collective contribution of C-H… O/N/Br interactions along with direction specific π…π, C-H…π interaction having highest contribution from dispersion energy responsible for mol. stability. Lipophilicity index (log P value) represents significant biol. activity of the mol., correlates well with the contribution of C-H…π interaction. The probable binding modes between title mol. with different active sites of S. aureus (PDB code: 4ALI), E. coli (PDB code: 1QG6), colon cancer (PDB code: 2hq6), lung cancer (PDB code: 1x2j) and 1BNA (DNA) receptors are investigated by mol. docking studies using ArgusLab software.

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., Electric Literature of 5392-10-9

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Langston, Steven P. team published research in Journal of Medicinal Chemistry in 2021 | 823-78-9

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., COA of Formula: C7H6Br2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. COA of Formula: C7H6Br2.

Langston, Steven P.;Grossman, Stephen;England, Dylan;Afroze, Roushan;Bence, Neil;Bowman, Douglas;Bump, Nancy;Chau, Ryan;Chuang, Bei-Ching;Claiborne, Christopher;Cohen, Larry;Connolly, Kelly;Duffey, Matthew;Durvasula, Nitya;Freeze, Scott;Gallery, Melissa;Galvin, Katherine;Gaulin, Jeffrey;Gershman, Rachel;Greenspan, Paul;Grieves, Jessica;Guo, Jianping;Gulavita, Nanda;Hailu, Shumet;He, Xingyue;Hoar, Kara;Hu, Yongbo;Hu, Zhigen;Ito, Mitsuhiro;Kim, Mi-Sook;Lane, Scott Weston;Lok, David;Lublinsky, Anya;Mallender, William;McIntyre, Charles;Minissale, James;Mizutani, Hirotake;Mizutani, Miho;Molchinova, Nina;Ono, Koji;Patil, Ashok;Qian, Mark;Riceberg, Jessica;Shindi, Vaishali;Sintchak, Michael D.;Song, Keli;Soucy, Teresa;Wang, Yana;Xu, He;Yang, Xiaofeng;Zawadzka, Agatha;Zhang, Ji;Pulukuri, Sai M. research published 《 Discovery of TAK-981, a First-in-Class Inhibitor of SUMO-Activating Enzyme for the Treatment of Cancer》, the research content is summarized as follows. SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO-TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclin. tumor models, culminating in the identification of the clin. mol. TAK-981.

823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., COA of Formula: C7H6Br2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lanzi, Matteo team published research in Angewandte Chemie, International Edition in 2021 | 244205-40-1

HPLC of Formula: 244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Organobromine compounds have fallen under increased scrutiny for their environmental impact., HPLC of Formula: 244205-40-1.

Lanzi, Matteo;Dherbassy, Quentin;Wencel-Delord, Joanna research published 《 Cyclic Diaryl λ3-Bromanes as Original Aryne Precursors》, the research content is summarized as follows. Despite the widespread application of hypervalent iodines, the corresponding λ3-bromanes are less explored. Herein the authors report a general, safe, and high-yielding strategy to access cyclic diaryl λ3-bromanes. These unique compounds feature reactivity that is appealing and complementary to that of λ3-iodanes, generating arynes under mild reaction conditions and in the presence of a weak base. Accordingly, formal meta-selective transition-metal-free C-O and C-N couplings may be achieved. Mechanistic studies unambiguously support the aryne generation mechanism.

HPLC of Formula: 244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lanzi, Matteo team published research in Organic Letters in 2021 | 402-49-3

Quality Control of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Organic compounds having carbon bonded to bromine are called organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Quality Control of 402-49-3.

Lanzi, Matteo;Ali Abdine, Racha Abed;De Abreu, Maxime;Wencel-Delord, Joanna research published 《 Cyclic Diaryl λ3-Bromanes: A Rapid Access to Molecular Complexity via Cycloaddition Reactions》, the research content is summarized as follows. The synthesis of dissymetric 2,3,2′,3′,4-substituted biaryls via pericyclic reactions of cyclic diaryl λ3-bromanes were reported. The functional groups tolerance and atom economy allow access to mol. complexity in a single reaction step. Continuous flow protocol was designed for the scale-up of the reaction, while postfunctionalizations was developed taking advantage of the residual Br-atom.

Quality Control of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Larcombe, Chloe N. team published research in Journal of Organic Chemistry in 2022 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. COA of Formula: C8H9BrO2.

Larcombe, Chloe N.;Malins, Lara R. research published 《 Accessing Diverse Cross-Benzoin and α-Siloxy Ketone Products via Acyl Substitution Chemistry》, the research content is summarized as follows. An approach to diverse cross-benzoin and α-siloxy ketone products which leverages a simple yet underutilized C-C bond disconnection strategy is reported. Acyl substitution of readily accessible α-siloxy Weinreb amides with organolithium compounds enables access to a broad scope of aryl, heteroaryl, alkyl, alkenyl, and alkynyl derivatives Enantiopure benzoins can be accessed via a chiral pool approach, and the utility of accessible cross-benzoins and α-siloxy ketones is highlighted in a suite of downstream synthetic applications.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., COA of Formula: C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Lavinda, Olga team published research in Angewandte Chemie, International Edition in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Electric Literature of 402-49-3

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Electric Literature of 402-49-3.

Lavinda, Olga;Witt, Collin H.;Woerpel, K. A. research published 《 Origin of High Diastereoselectivity in Reactions of Seven-Membered-Ring Enolates》, the research content is summarized as follows. Unlike many reactions of their six-membered-ring counterparts, the reactions of chiral seven-membered-ring enolates e.g., 5-(tert-Butyl)-1-methylazepan-1-one are highly diastereoselective. Diastereoselectivity was observed for a range of substrates, including lactam, lactone, and cyclic ketone derivatives The stereoselectivity arises from torsional and steric interactions that develop when electrophiles approach the diastereotopic π-faces of the enolates, which are distinguished by subtle differences in the orientation of nearby atoms of the ring.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Electric Literature of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary