Gu, Chengyihan team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Category: bromides-buliding-blocks

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Category: bromides-buliding-blocks.

Gu, Chengyihan;Wang, Shuaishuai;Zhang, Qingran;Xie, Jin research published 《 Visible-light-mediated amidation from carboxylic acids and tertiary amines via C-N cleavage》, the research content is summarized as follows. Synthesis of tertiary amides RC(O)NR1R2 [R = Ph, 4-MeC6H4, 4-PhC6H4, etc.; R1 = R2 = Et, n-Pr; R1R2 = CH2(CH2)3CH2] via iridium photocatalyzed amidation of carboxylic acids and tertiary amines through C-N bond cleavage was reported. A wide scope of structurally diverse carboxylic acids participated smoothly in the reaction, providing the desired tertiary amides with moderate-to-good yields (up to 93% yield). This amidation strategy provided an alternative way to address the regioselectivity between nucleophilic functional groups, thus complementing the functional group compatibility of classical amidation protocols. Its synthetic robustness was also proved by the late-stage modification of several complex mols. and gram-scale applications.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Category: bromides-buliding-blocks

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Gualandi, Andrea team published research in ChemCatChem in 2021 | 20469-65-2

Synthetic Route of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Organic compounds having carbon bonded to bromine are called organic bromides. Synthetic Route of 20469-65-2.

Gualandi, Andrea;Nenov, Artur;Marchini, Marianna;Rodeghiero, Giacomo;Conti, Irene;Paltanin, Ettore;Balletti, Matteo;Ceroni, Paola;Garavelli, Marco;Cozzi, Pier Giorgio research published 《 Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties》, the research content is summarized as follows. High level time-dependent d. functional theory (TD-DFT) computational modeling of coumarin dyes has been exploited for guiding the design of effective photocatalysts (PCs). A library of coumarins were investigated from the theor. point of view and photophys./electrochem. properties (absorption and emission spectra, E00, oxidation and reduction potentials) were evaluated. Comparison with literature values reported for a few candidates has been used for assessing the level of theory. On the basis of the results obtained, new strongly reducing PCs [Eox(PC.+/PC*)=-2.1 – -2.0 V vs. SCE] were discovered. Through the computational study of structure-properties relationships, a number of coumarins derivatives have been synthesized and evaluated in the pinacol coupling of aldehydes as the model reaction. The new organic photoredox catalysts show exptl. photophys. and electrochem. data in accordance with the ones predicted by calculation, with excited state reduction potentials surpassing those of highly reducing transition metal-based PCs. A careful investigation of their behavior as PC has revealed crucial issues that need to be taken into consideration in the general photoredox catalysis, shedding light on the use of these PC in the pinacol, as well as, in other photoredox reactions.

Synthetic Route of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Guan, Rongqing team published research in Organic Letters in 2022 | 402-49-3

Safety of 1-(Bromomethyl)-4-(trifluoromethyl)benzene, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Dehydrobromination, Grignard reactions, reductive coupling, Wittig reaction, and several nucleophilic substitution reactions are some of the principal reactions which involve organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organic compounds having carbon bonded to bromine are called organic bromides. Safety of 1-(Bromomethyl)-4-(trifluoromethyl)benzene.

Guan, Rongqing;Zhao, He;Zhang, Min research published 《 Construction of Fused Tetrahydroquinolines by Catalytic Hydride-Transfer-Initiated Tandem Functionalization of Quinolines》, the research content is summarized as follows. Herein, author’s present a new annulation reaction of quinolinium salts with indoles and paraformaldehyde, which enables syn-diastereoselective construction of a vast range of fused tetrahydroquinolines via ruthenium-catalyzed hydride-transfer-initiated tandem functionalization of the quinoline skeleton. The developed transformation proceeds with mild reaction conditions, good substrate and functional group compatibility, readily available feedstocks, and operational simplicity.

Safety of 1-(Bromomethyl)-4-(trifluoromethyl)benzene, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Guan, Ya team published research in Journal of Controlled Release in 2021 | 2576-47-8

2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., Application of C2H7Br2N

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Application of C2H7Br2N.

Guan, Ya;Gao, Ning;Niu, Hong;Dang, Yu;Guan, Jianjun research published 《 Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs》, the research content is summarized as follows. Stem cell transplantation has been extensively explored to promote ischemic limb vascularization and skeletal muscle regeneration. Yet the therapeutic efficacy is low due to limited cell survival under low oxygen environment of the ischemic limbs. Therefore, continuously oxygenating the transplanted cells has potential to increase their survival. During tissue regeneration, the number of blood vessels are gradually increased, leading to the elevation of tissue oxygen content. Accordingly, less exogenous oxygen is needed for the transplanted cells. Excessive oxygen may induce reactive oxygen species (ROS) formation, causing cell apoptosis. Thus, it is attractive to develop oxygen-release biomaterials that are responsive to the environmental oxygen level. Herein, we developed oxygen-release microspheres whose oxygen release was controlled by oxygen-responsive shell. The shell hydrophilicity and degradation rate decreased as the environmental oxygen level increased, leading to slower oxygen release. The microspheres were capable of directly releasing mol. oxygen, which are safer than those oxygen-release biomaterials that release hydrogen peroxide and rely on its decomposition to form oxygen. The released oxygen significantly enhanced mesenchymal stem cell (MSC) survival without inducing ROS production under hypoxic condition. Co-delivery of MSCs and microspheres to the mouse ischemic limbs ameliorated MSC survival, proliferation and paracrine effects under ischemic conditions. It also significantly accelerated angiogenesis, blood flow restoration, and skeletal muscle regeneration without provoking tissue inflammation. The above results demonstrate that the developed microspheres have potential to augment cell survival in ischemic tissues, and promote ischemic tissue regeneration in a safer and more efficient manner.

2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., Application of C2H7Br2N

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Guerra, Walter D. team published research in ChemMedChem in 2021 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Quality Control of 20469-65-2

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 20469-65-2, formula is C8H9BrO2, The most pervasive is the naturally produced bromomethane. Quality Control of 20469-65-2

Guerra, Walter D.;Lucena-Agell, Daniel;Hortigueela, Rafael;Rossi, Roberto A.;Fernando Diaz, J.;Padron, Jose M.;Barolo, Silvia M. research published 《 Design, Synthesis, and in vitro Evaluation of Tubulin-Targeting Dibenzothiazines with Antiproliferative Activity as a Novel Heterocycle Building Block》, the research content is summarized as follows. A series of free NH and N-substituted dibenzonthiazines I [R1 = H, F, CF3, Ph; R2 = H, 9-F, 7-Ph, etc.; R3 = H, Me, Bn, etc.] with potential anti-tumor activity from N-aryl-benzenesulfonamides was prepared A biol. test of synthesized compounds was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. Compounds I [R1 = R2 = H; R3 = SO2C6H5, 4-MeC6H4SO2] showed as the best compounds with promising values of activity (overall range of 2-5.4μM).

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Quality Control of 20469-65-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Guo, Chunfang team published research in Journal of Organic Chemistry in 2022 | 585-76-2

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Reference of 585-76-2

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Reference of 585-76-2

Guo, Chunfang;Han, Xuliang;Feng, Yu;Liu, Zhaolong;Li, Yueyun;Liu, Hui;Zhang, Lizhi;Dong, Yunhui;Li, Xinjin research published 《 Straightforward Synthesis of Alkyl Fluorides via Visible-Light-Induced Hydromono- and Difluoroalkylations of Alkenes with α-Fluoro Carboxylic Acids》, the research content is summarized as follows. Reported the first visible-light-induced hydromono- and difluoroalkylations of alkenes with inexpensive and easily accessible α-fluoro carboxylic acids. This metal-free protocol exhibits mild conditions, high efficiency and excellent functional-group tolerance, provided a straightforward approach to mono- and difluoroalkylated alkanes. Moreover, the fluorine effect on the hydrofluoroalkylation reaction was discussed in detail.

585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , Reference of 585-76-2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Guo, Jianan team published research in Bioorganic Chemistry in 2021 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., COA of Formula: C8H6BrF3

Organic compounds having carbon bonded to bromine are called organic bromides. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. COA of Formula: C8H6BrF3.

Guo, Jianan;Zhang, Yujia;Zhang, Changjun;Yao, Chuansheng;Zhang, Jingqi;Jiang, Xiaoying;Zhong, Zhichao;Ge, Jiamin;Zhou, Tao;Bai, Renren;Xie, Yuanyuan research published 《 N-Propargylamine-hydroxypyridinone hybrids as multitarget agents for the treatment of Alzheimer disease》, the research content is summarized as follows. AD is a progressive brain disorder. Because of the lack of remarkable single-target drugs against neurodegenerative disorders, the multitarget-directed ligand strategy has received attention as a promising therapeutic approach. Herein, we rationally designed twenty-nine hybrids of N-propargylamine-hydroxypyridinone. The designed hybrids possessed excellent iron-chelating activity (pFe3+ = 17.09-22.02) and potent monoamine oxidase B inhibitory effects. Various biol. evaluations of the optimal compound 6b were performed step by step, including inhibition screening of monoamine oxidase (hMAO-B IC50 = 0.083 ± 0.001 μM, hMAO-A IC50 = 6.11 ± 0.08 μM; SI = 73.5), prediction of blood-brain barrier permeability and mouse behavioral research. All of these favorable results proved that the N-propargylamine-hydroxypyridinone scaffold is a promising structure for the discovery of multitargeted ligands for AD therapy.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., COA of Formula: C8H6BrF3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Guo, Rui team published research in Chinese Journal of Chemistry in 2022 | 402-49-3

Related Products of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Related Products of 402-49-3.

Guo, Rui;Sang, Jiale;Xiao, Haijing;Li, Junxia;Zhang, Guozhu research published 《 Development of Novel Phosphino-Oxazoline Ligands and Their Application in Asymmetric Alkynlylation of Benzylic Halides》, the research content is summarized as follows. A new set of stereochem. diverse phosphino-oxazoline ligands derived from simple L-amino acids and 2-(diphenylphosphanyl)benzoic acid were developed. Those mono anionic tridentated N,N,P-ligands promote the Cu-catalyzed enantioselective radical coupling of terminal alkynes with a broad range of benzylic halides including benzo-fused cyclic α-halides and α-silyl benzyl halides in high yield and excellent enantioselectivity under mild reaction conditions. With multi distinct sites for structural modification, a diverse pool of chiral N,N,P-ligands is readily accessed, allowing for rapid optimization of the ligand structure for a specific substrate. Notably, the enantioselective alkynlylation of benzylic halides bonds in benzo-cyclic mols. has also been realized for the first time.

Related Products of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ghosh, Prithwish team published research in Cell Reports Physical Science in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Reference of 402-49-3

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Reference of 402-49-3.

Ghosh, Prithwish;Byun, Youjung;Kwon, Na Yeon;Kang, Ju Young;Mishra, Neeraj Kumar;Park, Jung Su;Kim, In Su research published 《 Reactivity of triplet diradical intermediates in aqueous media for transition-metal-free Csp2-H alkylation》, the research content is summarized as follows. Herein, a distinct reaction pathway involving triplet diradical intermediates in the coupling reaction between alkyl pyridinium ylides and electrophilic N-heterocyclic mols. was reported. Alkyl pyridinium ylides generated from alkyl pyridinium salts under basic aqueous conditions underwent addition into iminoamido N-heterocycles, generating triplet diradical intermediates lead to C-H alkylated N-heterocycles I [R = Me, Bn, 2-pyridyl, etc.; R1 = Br, Ph, 2-thienyl, etc.; R2 = Bn, CH2-2-FC6H4, CH2-2-naphthyl, etc.], II [R3 = Me, allyl, iPr, etc.; R4 = H, Cl; R5 = Bn, CH2-4-MeOC6H4, CH2-2-furyl, etc.; X = CH, N] and III [R6 = Me, 3-MeC6H4; R7 = Ph, Bn, 4-EtOC6H4, etc.]. The proposed reaction mechanism was supported by ESR and radical scavenging experiments Notably, a wide substrate scope and excellent level of functional group tolerance were attained under cost-effective and straightforward conditions, which revealed the amenability of this protocol in the pharmaceutical and chem. industries. These results were of significant relevance to the organic and medicinal chemists because of the handling simplicity, broad substrate scope, high efficiency, excellent chemoselectivity and the environmentally friendly conditions of the developed methodol.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., Reference of 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Ghosh, Prithwish team published research in Cell Reports Physical Science in 2022 | 823-78-9

Product Details of C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene. Organobromine compounds have fallen under increased scrutiny for their environmental impact., Product Details of C7H6Br2.

Ghosh, Prithwish;Byun, Youjung;Kwon, Na Yeon;Kang, Ju Young;Mishra, Neeraj Kumar;Park, Jung Su;Kim, In Su research published 《 Reactivity of triplet diradical intermediates in aqueous media for transition-metal-free Csp2-H alkylation》, the research content is summarized as follows. Herein, a distinct reaction pathway involving triplet diradical intermediates in the coupling reaction between alkyl pyridinium ylides and electrophilic N-heterocyclic mols. was reported. Alkyl pyridinium ylides generated from alkyl pyridinium salts under basic aqueous conditions underwent addition into iminoamido N-heterocycles, generating triplet diradical intermediates lead to C-H alkylated N-heterocycles I [R = Me, Bn, 2-pyridyl, etc.; R1 = Br, Ph, 2-thienyl, etc.; R2 = Bn, CH2-2-FC6H4, CH2-2-naphthyl, etc.], II [R3 = Me, allyl, iPr, etc.; R4 = H, Cl; R5 = Bn, CH2-4-MeOC6H4, CH2-2-furyl, etc.; X = CH, N] and III [R6 = Me, 3-MeC6H4; R7 = Ph, Bn, 4-EtOC6H4, etc.]. The proposed reaction mechanism was supported by ESR and radical scavenging experiments Notably, a wide substrate scope and excellent level of functional group tolerance were attained under cost-effective and straightforward conditions, which revealed the amenability of this protocol in the pharmaceutical and chem. industries. These results were of significant relevance to the organic and medicinal chemists because of the handling simplicity, broad substrate scope, high efficiency, excellent chemoselectivity and the environmentally friendly conditions of the developed methodol.

Product Details of C7H6Br2, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary