Vanjare, Balasaheb D. team published research in Molecular Diversity in | 585-76-2

Recommanded Product: 3-Bromobenzoic acid, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic compounds having carbon bonded to bromine are called organic bromides. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Recommanded Product: 3-Bromobenzoic acid.

Vanjare, Balasaheb D.;Choi, Nam Gyu;Eom, Young Seok;Raza, Hussain;Hassan, Mubashir;Lee, Ki Hwan;Kim, Song Ja research published 《 Synthesis, carbonic anhydrase inhibition, anticancer activity, and molecular docking studies of 1,3,4-oxadiazole derivatives》, the research content is summarized as follows. In this work, various organic compounds possessing 1,3,4-oxadiazole as a core structure and the structure of the newly synthesized target compounds I (X = H, 2-Br, 3-Br, 4-Br; R = Ph, 4-fluorophenyl, pyridin-3-yl, etc.) has been revealed using different anal. approaches such as FT-IR, LCMS, and NMR (proton and carbon), resp. The in vitro carbonic anhydrase potentials of these synthesized 17 different analogs were investigated. The result suggests that compound I (X = H; R = pyridin-3-yl), a 3-pyridine substituted analog with an IC50 of 0.1 μM, was found to have the most potent carbonic inhibitory activity (11-fold more active) than the pos. control (acetazolamide) with an IC50 of 1.1 ± 0.1 μM. Besides, among the series I approved in the identification of four potent carbonic anhydrase inhibitors with the IC50 standards varies from 0.1 to 1.0 ± 0.1 μM. Addnl., the non-competitive behavior for potent compound II was analyzed using the Lineweaver-Burk plot from the kinetic study. Furthermore, the anticancer activity of all the synthesized compounds screened against B16F10 melanoma cells using the MTT assay method. Addnl., the mol. docking studies revealed that II inhibitor shows good binding energy as well as good binding interaction pattern along with enzyme.

Recommanded Product: 3-Bromobenzoic acid, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Vatansever, Erol C. team published research in Bioorganic & Medicinal Chemistry in 2020 | 2576-47-8

Category: bromides-buliding-blocks, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 2576-47-8, formula is C2H7Br2N, The most pervasive is the naturally produced bromomethane. Category: bromides-buliding-blocks

Vatansever, Erol C.;Kang, Jeffrey;Tuley, Alfred;Ward, E. Sally;Liu, Wenshe Ray research published 《 An optimal “Click” formulation strategy for antibody-drug conjugate synthesis》, the research content is summarized as follows. As a versatile reaction for bioconjugation, Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has enormous potential in the synthesis of antibody-drug conjugates (ADCs). In order to optimize CuAAC-based ADC synthesis, we characterized kinetically different formulation processes by mimicking ADC synthesis using small mols. and subsequently revealed unique kinetic behaviors of different combinations of alkyne and azide conditions. Our results indicate that under ADC synthesis conditions, for an alkyne-containing drug, its concentration has minimal impact on the reaction rate when an antibody has a non-metal-chelating azide but is proportional to concentration when an antibody contains a metal-chelating azide; however, for an alkyne-containing antibody, the ADC synthesis rate is proportional to the concentration of a drug with a non-metal-chelating azide but displays almost no dependence on drug concentration with a metal-chelating azide. Based on our results, we designed and tested an optimal “click” formulation strategy that allowed rapid and cost-effective synthesis of a new ADC.

Category: bromides-buliding-blocks, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Veligeti, Rajkumar team published research in Journal of Fluorine Chemistry in 2022 | 402-49-3

Synthetic Route of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene, Synthetic Route of 402-49-3

Veligeti, Rajkumar;Ramakrishna, D. S.;Madhu, Rajesh Bagepalli;Anireddy, Jaya Shree research published 《 Synthesis of fluoro and trifluoromethyl substituents containing novel tetracyclic N-benzylated benzopiperazine fused acridone regioisomers using a greener solvent 2-MeTHF and their DFT studies》, the research content is summarized as follows. This work was reported the synthesis of novel tetracyclic N-benzylated benzopiperazine fused acridone regioisomers e.g., I tagged with three trifluoromethyl and three fluoride substituents. The novelty of this work was based on the execution of green chem. principles, 2-Me THF was employed as renewable solvent during this benzylation reaction (carried out at room temperature) resulting higher yields (87-94%) under halogenated solvent free methodol.

Synthetic Route of 402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., 402-49-3.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Venteicher, Brooklynn team published research in ChemMedChem in 2021 | 585-76-2

Recommanded Product: 3-Bromobenzoic acid, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Recommanded Product: 3-Bromobenzoic acid

Venteicher, Brooklynn;Merklin, Kasey;Ngo, Huy X.;Chien, Huan-Chieh;Hutchinson, Keino;Campbell, Jerome;Way, Hannah;Griffith, Joseph;Alvarado, Cesar;Chandra, Surabhi;Hill, Evan;Schlessinger, Avner;Thomas, Allen A. research published 《 The effects of prodrug size and a carbonyl linker on L-type amino acid transporter 1-targeted cellular and brain uptake》, the research content is summarized as follows. The L-type amino acid transporter 1 (LAT1, SLC7A5) imports dietary amino acids and amino acid drugs (e. g., L-DOPA) into the brain, and plays a role in cancer metabolism Though there have been numerous reports of LAT1-targeted amino acid-drug conjugates (prodrugs), identifying the structural determinants to enhance substrate activity has been challenging. In this work, we investigated the position and orientation of a carbonyl group in linking hydrophobic moieties including the anti-inflammatory drug ketoprofen to L-tyrosine and L-phenylalanine. We found that esters of meta-carboxyl L-phenylalanine had better LAT1 transport rates than the corresponding acylated L-tyrosine analogs. However, as the size of the hydrophobic moiety increased, we observed a decrease in LAT1 transport rate with a concomitant increase in potency of inhibition. Our results have important implications for designing amino acid prodrugs that target LAT1 at the blood-brain barrier or on cancer cells.

Recommanded Product: 3-Bromobenzoic acid, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Verdirosa, Federica team published research in ChemMedChem in 2022 | 585-76-2

Product Details of C7H5BrO2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid, Product Details of C7H5BrO2

Verdirosa, Federica;Gavara, Laurent;Sevaille, Laurent;Tassone, Giusy;Corsica, Giuseppina;Legru, Alice;Feller, Georges;Chelini, Giulia;Mercuri, Paola Sandra;Tanfoni, Silvia;Sannio, Filomena;Benvenuti, Manuela;Cerboni, Giulia;De Luca, Filomena;Bouajila, Ezeddine;Vo Hoang, Yen;Licznar-Fajardo, Patricia;Galleni, Moreno;Pozzi, Cecilia;Mangani, Stefano;Docquier, Jean-Denis;Hernandez, Jean-Francois research published 《 1,2,4-Triazole-3-Thione Analogues with a 2-Ethylbenzoic Acid at Position 4 as VIM-type Metallo-β-Lactamase Inhibitors》, the research content is summarized as follows. Metallo-β-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-neg. pathogens. Unfortunately, clin. efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino compounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, these compounds were unable to restore antibiotic susceptibility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiol. activity, we synthesized and characterized compounds where the hydrazone-like bond of the Schiff base analogs was replaced by a stable Et link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but showed a significantly better activity on VIM-type enzymes, with Ki values in the μM to sub-μM range. The resolution of the crystallog. structure of VIM-2 in complex with one of the best inhibitors yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the β-lactam susceptibility of VIM-type-producing E. coli laboratory strains and also of K. pneumoniae clin. isolates. In addition, selected compounds were found to be devoid of toxicity toward human cancer cells at high concentration, thus showing promising safety.

Product Details of C7H5BrO2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Vishwanath, Divakar team published research in Molecules in 2022 | 585-76-2

HPLC of Formula: 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. HPLC of Formula: 585-76-2.

Vishwanath, Divakar;Girimanchanaika, Swamy S.;Dukanya, Dukanya;Rangappa, Shobith;Yang, Ji-Rui;Pandey, Vijay;Lobie, Peter E.;Basappa, Basappa research published 《 Design and Activity of Novel Oxadiazole Based Compounds That Target Poly(ADP-ribose) Polymerase》, the research content is summarized as follows. Novel PARP inhibitors with selective mode-of-action have been approved for clin. use. Herein, oxadiazole based ligands that are predicted to target PARP-1 have been synthesized and screened for the loss of cell viability in mammary carcinoma cells, wherein seven compounds were observed to possess significant IC50 values in the range of 1.4 to 25 μM. Furthermore, compound 5u, inhibited the viability of MCF-7 cells with an IC50 value of 1.4μM, when compared to Olaparib (IC50 = 3.2 μM). Compound 5s also decreased cell viability in MCF-7 and MDA-MB-231 cells with IC50 values of 15.3 and 19.2 μM, resp. Treatment of MCF-7 cells with compounds 5u and 5s produced PARP cleavage, H2AX phosphorylation and CASPASE-3 activation comparable to that observed with Olaparib. Compounds 5u and 5s also decreased foci-formation and 3D Matrigel growth of MCF-7 cells equivalent to or greater than that observed with Olaparib. Finally, in silico anal. demonstrated binding of compound 5s towardsthe catalytic site of PARP-1, indicating that these novel oxadiazoles synthesized herein may serve as exemplars for the development of new therapeutics in cancer.

HPLC of Formula: 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tilby, Michael J. team published research in ACS Catalysis in 2022 | 402-49-3

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., SDS of cas: 402-49-3

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 402-49-3, formula is C8H6BrF3, Name is 1-(Bromomethyl)-4-(trifluoromethyl)benzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. SDS of cas: 402-49-3.

Tilby, Michael J.;Dewez, Damien F.;Pantaine, Loic R. E.;Hall, Adrian;Martinez-Lamenca, Carolina;Willis, Michael C. research published 《 Photocatalytic Late-Stage Functionalization of Sulfonamides via Sulfonyl Radical Intermediates》, the research content is summarized as follows. A plethora of drug mols. and agrochems. contain the sulfonamide functional group. However, sulfonamides are seldom viewed as synthetically useful functional groups. To confront this limitation, a late-stage functionalization strategy is described, which allows sulfonamides to be converted to pivotal sulfonyl radical intermediates. This methodol. exploits a metal-free photocatalytic approach to access radical chem., which is harnessed by combining pharmaceutically relevant sulfonamides with an assortment of alkene fragments. Addnl., the sulfinate anion can be readily obtained, further broadening the options for sulfonamide functionalization. Mechanistic studies suggest that energy-transfer catalysis (EnT) is in operation.

402-49-3, 4-Trifluoromethylbenzyl bromide is a useful research compound. Its molecular formula is C8H6BrF3 and its molecular weight is 239.03 g/mol. The purity is usually 95%.
4-Trifluoromethylbenzyl bromide is a choline derivative that acts as an anticancer agent. It is structurally similar to the anticancer drug doxorubicin, which has been shown to be effective against breast cancer and leukemia. 4-Trifluoromethylbenzyl bromide interacts with cellular proteins, including choline kinase, and inhibits the mitochondrial pathway. This leads to cell death through apoptosis. The molecule also interacts with nucleotide bases such as thymine and cytosine in DNA, inhibiting transcription and replication. 4-Trifluoromethylbenzyl bromide binds strongly to the hydroxyl group of cholesterol by an electrophilic substitution mechanism to form a covalent bond with its hydroxy group. The molecule can also bind to chloride ions by an ionic bond., SDS of cas: 402-49-3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tilly, David P. team published research in Chemistry – A European Journal in 2022 | 2576-47-8

Recommanded Product: 2-Bromoethylamine hydrobromide, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide, Recommanded Product: 2-Bromoethylamine hydrobromide

Tilly, David P.;Cullen, William;Zhong, Heng;Jamagne, Romain;Vitorica-Yrezabal, Inigo;Webb, Simon J. research published 《 α-Amino-iso-butyric acid foldamers terminated with rhodium(I) N-heterocyclic carbene catalysts》, the research content is summarized as follows. To investigate how remotely induced changes in ligand folding might affect catalysis by organometallic complexes, dynamic α-amino-iso-butyric acid (Aib) peptide foldamers bearing rhodium(I) N-heterocyclic carbene (NHC) complexes have been synthesized and studied. X-ray crystallog. of a foldamer with an N-terminal azide and a C-terminal Rh(NHC)(Cl)(diene) complex showed a racemate with a chiral axis in the Rh(NHC) complex and a distorted 310 helical body. Replacing the azide with either one or two chiral L-α-methylvaline (L-αMeVal) residues gave diastereoisomeric foldamers that each possessed point, helical and axial chirality. NMR spectroscopy revealed an unequal ratio of diastereoisomers for some foldamers, indicating that the chiral conformational preference of the N-terminal residue(s) was relayed down the 1 nm helical body to the axially chiral Rh(NHC) complex. Although the remote chiral residue(s) did not affect the stereoselectivity of hydrosilylation reactions catalyzed by these foldamers, these studies suggest a potential pathway towards remote conformational control of organometallic catalysts.

Recommanded Product: 2-Bromoethylamine hydrobromide, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Tinnermann, Hendrik team published research in Journal of the American Chemical Society in 2021 | 823-78-9

SDS of cas: 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 823-78-9, formula is C7H6Br2, Name is 1-Bromo-3-(bromomethyl)benzene, SDS of cas: 823-78-9

Tinnermann, Hendrik;Sung, Simon;Csokas, Daniel;Toh, Zhi Hao;Fraser, Craig;Young, Rowan D. research published 《 Alkali Metal Adducts of an Iron(0) Complex and Their Synergistic FLP-Type Activation of Aliphatic C-X Bonds》, the research content is summarized as follows. Authors report the formation and full characterization of weak adducts between Li+ and Na+ cations and a neutral iron(0) complex, [Fe(CO)3(PMe3)2] (1), supported by weakly coordinating [BArF20] anions, [1·M][BArF20] (M = Li, Na). The adducts are found to synergistically activate aliphatic C-X bonds (X = F, Cl, Br, I, OMs, OTf), leading to the formation of iron(II) organyl compounds of the type [FeR(CO)3(PMe3)2][BArF20], of which several were isolated and fully characterized. Stoichiometric reactions with the resulting iron(II) organyl compounds show that this system can be utilized for homocoupling and cross-coupling reactions and the formation of new C-E bonds (E = C, H, O, N, S). Further, they utilize [1·M][BArF20] as a catalyst in a simple hydrodehalogenation reaction under mild conditions to showcase its potential use in catalytic reactions. Finally, the mechanism of activation is probed using DFT and kinetic experiments that reveal that the alkali metal and iron(0) center cooperate to cleave C-X via a mechanism closely related to intramol. FLP activation.

SDS of cas: 823-78-9, 3-Bromobenzyl bromide undergoes reduction with diethylzinc in the presence of Pd(PPh3)4 to yield corresponding hydrocarbon.

3-Bromobenzyl bromide is a useful research compound. Its molecular formula is C7H6Br2 and its molecular weight is 249.93 g/mol. The purity is usually 95%.

3-Bromobenzyl bromide is a molecule that has been synthesized and shown to have anticancer activity. It inhibits the activity of cancer cells by binding to amines in these cells and preventing the formation of hydrogen bonds between these molecules. 3-Bromobenzyl bromide has also been shown to selectively inhibit the activity of NS5B polymerase, an enzyme that is important in the replication of the hepatitis C virus. The synthetic nature of this molecule makes it an attractive target for analytical methods such as nuclear magnetic resonance spectroscopy. This molecule also shows significant cytotoxicity against cancer cell lines in vitro, as well as inducing tumor necrosis factor-alpha (TNF-α) production in lps-stimulated murine macrophages., 823-78-9.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Torres, Fernanda Guimaraes team published research in Catalysts in 2022 | 244205-40-1

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Formula: C6H6BBrO2

Organic compounds having carbon bonded to bromine are called organic bromides. 244205-40-1, formula is C6H6BBrO2, Name is (2-Bromophenyl)boronic acid. Depending on the type of carbon to which the bromine is bonded, organic bromide could be alkyl, alkenyl, alkynyl, or aryl. Formula: C6H6BBrO2.

Torres, Fernanda Guimaraes;Teodoro, Filipe Simoes;Gurgel, Leandro Vinicius Alves;Bourdreux, Flavien;Zayene, Olfa;Gaucher, Anne;Gil, Laurent Frederic;Prim, Damien research published 《 Application of Raw and Chemically Modified Biomasses for Heterogeneous Cu-Catalysed Conversion of Aryl boronic Acids to Phenols Derivatives》, the research content is summarized as follows. This work describes the application of raw and chem. modified cellulose and sugarcane bagasse for ipso-hydroxylation of aryl boronic acids in environmentally friendly reaction conditions. The catalytic efficiency of five support-[Cu] materials was compared in forming phenols from aryl boronic acids. Our investigation highlights that the CEDA-[Cu] material (6-deoxy-6-aminoethyleneamino cellulose loaded with Cu) leads to the best results under very mild reaction conditions. The optimized catalytic sequence, allowing a facile transformation of boronic acids to phenols, required the mandatory and joint presence of the support, Cu2O, and KOH at room temperature CEDA-[Cu] was characterized using 13C solid-state NMR, ICP, and FTIR. The use of CEDA-[Cu] accounts for the efficacious synthesis of variously substituted phenol derivatives and presents very good recyclability after five catalytic cycles.

244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., Formula: C6H6BBrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary