Shen, Yangyang team published research in Journal of the American Chemical Society in 2021 | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Product Details of C8H9BrO2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Product Details of C8H9BrO2.

Shen, Yangyang;Rovis, Tomislav research published 《 Late-Stage N-Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis》, the research content is summarized as follows. Herein, a nickel/photoredox dual catalysis strategy that affects site-selective α-arylation of various trialkylamines MeNRR1 [R = Me, i-Pr, cyclohexyl, etc.; R1 = Me, cyclohexyl, Bn, etc.; RR1 = -(CH2)5-, -CH(COOEt)(CH2)4-, -C(Me)2(CH2)3C(Me)2-, etc.] was reported. This catalytic system shows exclusive N-Me selectivity with a wide range of trialkylamines under mild conditions, even in the context of late-stage arylation of pharmaceutical compounds bearing this common structural motif. Mechanistic studies indicate the unconventional behavior of Ni catalyst upon intercepting the α-amino radicals, in which only the primary α-amino radical undergoes a successful cross-coupling process.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Product Details of C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sheng, Bingbing team published research in European Journal of Organic Chemistry in 2022 | 244205-40-1

Application of C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 244205-40-1, formula is C6H6BBrO2, The most pervasive is the naturally produced bromomethane. Application of C6H6BBrO2

Sheng, Bingbing;Zeng, Cuicui;Chen, Jing;Ye, Wen-Cai;Tang, Wei;Lan, Ping;Banwell, Martin G. research published 《 Total Syntheses of the Imidazo[1,2-f]phenanthridine-Containing Alkaloid Zephycandidine A》, the research content is summarized as follows. Two distinct and concise syntheses of zephycandidine A (I) from readily available starting materials are reported. In the first, the imidazole derived from piperonal was subjected to reaction with o-bromoiodobenzene or the corresponding di-iodide in the presence of Pd[0] and thereby forming, via Buchwald-Hartwig and Heck reactions, a mixture of target I and regio-isomer. These products could only be separated from one another by HPLC. A lower yielding but completely regioselective synthesis of zephycandidine A was achieved by palladium-catalyzed cross-coupling of the imidazole, derived from the bromopiperonal with o-iodophenylboronic acid. Preliminary biol. screening of synthesized compounds reveal that some possess anti-viral properties but, contrary to expectations, are not notable inhibitors of acetylcholinesterase.

Application of C6H6BBrO2, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Shi, Chong-Yang team published research in Organic Chemistry Frontiers in 2022 | 5392-10-9

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., COA of Formula: C9H9BrO3

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 5392-10-9, formula is C9H9BrO3, Name is 2-Bromo-4,5-dimethoxybenzaldehyde. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. COA of Formula: C9H9BrO3.

Shi, Chong-Yang;Zhou, Ji-Jia;Hong, Pan;Zhu, Bo-Han;Hong, Feng-Lin;Qian, Peng-Cheng;Sun, Qing;Lu, Xin;Ye, Long-Wu research published 《 Efficient synthesis of tetracyclic γ-lactams via gold-catalyzed oxidative cyclization of alkenyl diynes》, the research content is summarized as follows. An efficient gold-catalyzed cascade cyclization of alkenyl diynes involving alkyne oxidation, carbene-alkyne metathesis and cyclopropanation was developed, furnishing a series of tetracyclic γ-lactams I [R1 = Ph, 2-thienyl, 1-naphthyl, etc.; R2 = H, 7-Me, 7-F, etc.; R3 = H, Me; R4 = Ms, SO2Ph, Ts, etc.] bearing one quaternary carbon center and one tertiary carbon center in moderate to good yields with excellent diastereoselectivities. In addition, the proposed mechanistic rationale for this oxidative cyclization was well supported by theor. calculations

5392-10-9, 2-Bromo-4,5-dimethoxybenzaldehyde is a useful research compound. Its molecular formula is C9H9BrO3 and its molecular weight is 245.07 g/mol. The purity is usually 95%.
2-Bromo-4,5-dimethoxybenzaldehyde is a synthetic compound that has been shown to be an effective agent for inducing apoptosis in leukemia cells. It is an efficient method for synthesizing the compound and ha2-Bromo-4,5-dimethoxybenzaldehyde induces cell death by topoisomerase-mediated DNA cleavage, which results in chromosomal fragmentation and high levels of reactive oxygen species in the cell., COA of Formula: C9H9BrO3

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Shi, Hongwei team published research in Green Chemistry in 2022 | 585-76-2

SDS of cas: 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 585-76-2, formula is C7H5BrO2, Name is 3-Bromobenzoic acid. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. SDS of cas: 585-76-2.

Shi, Hongwei;Li, Jun;Wang, Tao;Rudolph, Matthias;Hashmi, A. Stephen K. research published 《 Catalyst- and additive-free sunlight-induced autoxidation of aldehydes to carboxylic acids》, the research content is summarized as follows. A catalyst- and additive-free sunlight-induced strategy for autoxidation of a wide range of aldehydes RCHO (R = Bu, cyclohexyl, Ph, pyridin-3-yl, etc.) to carboxylic acids RC(O)OH is described for the first time. In this oxidation system, air serves as the source of oxygen and sunlight as the light source, and the system includes the advantages of green, highly atom-efficient, and low-cost synthesis. This method was easily applied even at gram scale. The reaction proceeds smoothly even at lower temperature and in natural light.

SDS of cas: 585-76-2, 3-bromobenzoic acid is a bromobenzoic acid carrying a single bromo subsituent at the 3-position.
3-Bromobenzoic acid, also known as 3-Bromobenzoic acid, is a useful research compound. Its molecular formula is C7H5BrO2 and its molecular weight is 201.02 g/mol. The purity is usually 95%.
3-bromobenzoic acid is used as a reagent in the synthesis of deoxypodophyllotoxin derivatives with insecticidal activity. Also used as a reagent in the synthesis of thiazole derivatives with antibacterial activity.
3-bromobenzoic acid is a molecule that is classified as a Group P2. It has an electronegativity of 1.3 and an acidity of 0.8, which are both in the middle range of values for this group. 3-Bromobenzoic acid is soluble in water and is soluble in ethanol, acetone, and ether. The chemical structure of 3-bromobenzoic acid can be determined by its monoclonal antibody binding sites, electrochemical impedance spectroscopy data, and Langmuir adsorption isotherm data. 3-Bromobenzoic acid reacts with hydrochloric acid to form benzoate and HCl gas. Chronic exposure to 3-bromobenzoic acid has been shown to cause glutamate dehydrogenase inhibition, leading to an accumulation of p-hydroxybenzoic acid in the body. , 585-76-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Schleyer, Kelton A. team published research in ChemBioChem in 2020 | 2576-47-8

Electric Literature of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Electric Literature of 2576-47-8.

Schleyer, Kelton A.;Datko, Benjamin D.;Burnside, Brandon;Cui, Chao;Ma, Xiaowei;Grey, John K.;Cui, Lina research published 《 Responsive Fluorophore Aggregation Provides Spectral Contrast for Fluorescence Lifetime Imaging》, the research content is summarized as follows. Fluorophores experience altered emission lifetimes when incorporated into and liberated from macromols. or mol. aggregates; this trend suggests the potential for a fluorescent, responsive probe capable of undergoing self-assembly and aggregation and consequently altering the lifetime of its fluorescent moiety to provide contrast between the active and inactive probes. We developed a cyanobenzothioazole-fluorescein conjugate (1), and spectroscopically examined the lifetime changes caused by its reduction-induced aggregation in vitro. A decrease in lifetime was observed for compound 1 in a buffered system activated by the biol. reducing agent glutathione, thus suggesting a possible approach for designing responsive self-aggregating lifetime imaging probes.

Electric Literature of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Schmidt, Michael A. team published research in Journal of Organic Chemistry in 2022 | 20469-65-2

Electric Literature of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Organic bromides such as alkyl bromides are used as fumigants in agriculture to control insects. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Ethylene bromide is one of the commercially important organic bromides which are the component of leaded gasoline. Electric Literature of 20469-65-2.

Schmidt, Michael A. research published 《 Effect of Terminal Alkylation of Aryl and Heteroaryl Hydrazines in the Fischer Indole Synthesis》, the research content is summarized as follows. The effect of alkylation on the terminal position of aryl and heteroaryl hydrazines in the Fischer indole synthesis was examined Compared to their unalkylated counterparts, reactions using alkylated s provided indole products with higher yields and faster rates. The reactions can be conducted at lower temperatures and are compatible with acid-sensitive functionality. The terminally alkylated hydrazines were readily prepared by a new two-step sequence and held as stable hydrazinium salts. The mild formation of the salts along with the favorable Fischer indole reaction conditions highlights the potential of this approach in later-stage synthetic use.

Electric Literature of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Scholz, Alexander S. team published research in Journal of the American Chemical Society in 2020 | 244205-40-1

SDS of cas: 244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. 244205-40-1, formula is C6H6BBrO2, The most pervasive is the naturally produced bromomethane. SDS of cas: 244205-40-1

Scholz, Alexander S.;Massoth, Julian G.;Bursch, Markus;Mewes, Jan-M.;Hetzke, Thilo;Wolf, Bernd;Bolte, Michael;Lerner, Hans-Wolfram;Grimme, Stefan;Wagner, Matthias research published 《 BNB-Doped Phenalenyls: Modular Synthesis, Optoelectronic Properties, and One-Electron Reduction》, the research content is summarized as follows. A highly modular synthesis of BNB- and BOB-doped phenalenyls is presented. Treatment of the 1,8-naphthalenediyl-bridged boronic acid anhydride 1,8-[B(OH)OB(OH)]C10H6 (1) with LiAlH4/Me3SiCl afforded the corresponding 1,8-naphthalenediyl-supported diborane(6) 1,8-[HB(μ-H)2BH]C10H6 (2), which served as the starting material for all subsequent transformations. Upon addition of MesMgBr/Me3SiCl, 2 was readily converted to the tetraorganyl diborane(6) 1,8-[MesB(μ-H)2BMes]C10H6 (5). The further heteroatoms were finally introduced through the reaction of 2 with (Me3Si)2NR’ or 5 with H2NR’ or H2O (R’ = H, Me, p-Tol). A helically twisted, fully BNB-embedded PAH I (11) was prepared by combining 2 with a dibrominated m-terphenylamine, followed by a Grignard-mediated double ring-closure reaction. All compounds devoid of B-H bonds show favorable optoelectronic properties, such as luminescence and reversible reduction behavior. In the case of the BNB-phenalenyl 1,8-[MesBN(Me)BMes]C10H6 (7), the radical-anion salt K[7] was generated through chem. reduction with K metal and characterized by EPR spectroscopy. K[7] is not long-term stable in a THF/c-hexane solution, but abstracts an H atom with formation of the diamagnetic BNB-doped 1H-phenalene K[7H].

SDS of cas: 244205-40-1, 2-Bromophenylboronic Acid is used as an inhibitor of the hormone sensitive lipase.
2-Bromophenylboronic acid, also known as 2-Bromophenylboronic acid, is a useful research compound. Its molecular formula is C6H6BBrO2 and its molecular weight is 200.83 g/mol. The purity is usually 95%.
2-Bromophenylboronic acid is a glucose monitoring agent that has a ruthenium complex with an acidic environment. The nitro group and the amines are in close proximity to the boron center, and this proximity leads to a high nucleophilic character of the molecule. This reactivity allows 2-bromophenylboronic acid to be used as a fluorescence probe for acidic environments. 2-Bromophenylboronic acid also inhibits secretase enzymes, which are involved in Alzheimer’s disease and other neurodegenerative disorders. It is an inhibitor of γ-secretase, which is responsible for cleaving the amyloid precursor protein (APP), and it has shown efficacy against biphenyl, an anticancer drug that binds to benzodiazepine receptors. 2-Bromophenylboronic acid is also an enantiopure compound because all four substituents are different from each other., 244205-40-1.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Schreib, Benedikt S. team published research in Journal of the American Chemical Society in 2021 | 2576-47-8

Computed Properties of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 2576-47-8, formula is C2H7Br2N, Name is 2-Bromoethylamine hydrobromide, Computed Properties of 2576-47-8

Schreib, Benedikt S.;Son, Mina;Aouane, Francoise A.;Baik, Mu-Hyun;Carreira, Erick M. research published 《 Allene C(sp2)-H Activation and Alkenylation Catalyzed by Palladium》, the research content is summarized as follows. Herein, a Pd-catalyzed C-H alkenylation of electronically unbiased allenes e.g., N-(6-(triisopropylsilyl)hepta-4,5-dien-1-yl)picolinamide, affording penta-1,2,4-triene products e.g., I in up to 94% yield was reported. A picolinamide directing group enables the formation of putative allenyl-palladacycles, which subsequently participate in a turnover limiting Heck-type reaction with electron-deficient alkene RCH=CH2 (R = methoxycarbonyl, (benzyloxy)carbonyl, [(4-methyl-2-oxo-2H-chromen-7-yl)oxy]carbonyl, etc.) coupling partners. This mechanistic proposal is consistent with exptl. and computational investigations. Addnl., for the first time, the use of picolinamide N,O-acetals as readily removable auxiliaries for C-H activation reactions, allowing the efficient alkenylation of allenyl carbinol derivatives was reported. Successful removal of the directing groups without affecting the reactive penta-1,2,4-triene substructure of the products e.g., I was demonstrated.

Computed Properties of 2576-47-8, 2-Bromoethylamine hydrobromide is a useful building block for proteomics research.
2-Bromoethylamine hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist. It is used to construct C2-symmetric imidazolidinylidene ligands with a dioxolane backbone.
2-Bromoethylamine Hydrobromide is used in the synthesis of analogs of 5,​10,​15,​20-​tetrakis(1-​methylpyridinium-​4-​yl)​porphyrin (TMPyP4) as inhibitors of human telomerase. It is also used to prepare SB-705498, a potent, selective and orally bioavailable TRPV1 antagonist.
2-Bromoethylamine hydrobromide is a nonsteroidal anti-inflammatory drug that is used to treat inflammation and pain. It is a prodrug that is hydrolyzed in vivo to its active form, 2-Bromoethylamine hydrobromide. The bound form of this drug has been shown to inhibit the development of cell nuclei in the nucleus of cells. This drug also inhibits the production of nitric oxide, which leads to cell death by necrosis. 2-Bromoethylamine hydrobromide has been shown to have an inhibitory effect on the activity of glycol ethers, which are used as solvents for resins in coatings and adhesives., 2576-47-8.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Sebald, Michael A. team published research in Synthesis in | 20469-65-2

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Product Details of C8H9BrO2

Vinyl bromides undergo the Heck reaction, which involves C-C coupling with alkene to give substituted alkenes. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene. Methyl bromide is a precursor in the manufacture of several chemicals and is employed as a soil sterilant, mainly for seed production. Product Details of C8H9BrO2.

Sebald, Michael A.;Gebauer, Julian;Koch, Matthias research published 《 Concise Syntheses of Alternariol, Alternariol-9-monomethyl Ether and Their D 3 -Isotopologues》, the research content is summarized as follows. Alternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH and AME levels is of increasing interest. As the availability of both native and labeled AOH and AME anal. standards is very limited, we herein present a novel and concise approach towards their synthesis by employing a ruthenium-catalyzed orthoarylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS anal., a technique commonly used for the quantification of natural products in food and feed.

20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., Product Details of C8H9BrO2

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary

Selmani, Aymane team published research in ACS Catalysis in 2022 | 20469-65-2

Related Products of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

One prominent application of synthetic organobromine compounds is the use of polybrominated diphenyl ethers as fire-retardants, and in fact fire-retardant manufacture is currently the major industrial use of the element bromine. 20469-65-2, formula is C8H9BrO2, Name is 1-Bromo-3,5-dimethoxybenzene, Related Products of 20469-65-2

Selmani, Aymane;Schoetz, Markus D.;Queen, Adele E.;Schoenebeck, Franziska research published 《 Modularity in the Csp3 Space-Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification》, the research content is summarized as follows. To meet the need for a rapid, streamlined, and potentially automatable mol. synthesis, modular coupling approaches are highly desired. While the diversification of aromatic mols., i.e., Csp2 space, has greatly advanced, modular syntheses in the Csp3 space are comparably much less developed. This report explores the potential of alternative functional handles, i.e., alkyl germanes, in this context, which combine features of stability and synthesizability with selective reactivity. The authors show the chemoselective functionalization of alkyl germanes (R-GeEt3) under photoredox conditions (Giese addition) and the implementation in a modular building block, which allows for selective diversification of Csp3-halogen vs. Csp3-Bpin vs. Csp3-GeEt3 sites.

Related Products of 20469-65-2, 1-Bromo-3,5-dimethoxybenzene, also known as 1-Bromo-3,5-dimethoxybenzene, is a useful research compound. Its molecular formula is C8H9BrO2 and its molecular weight is 217.06 g/mol. The purity is usually 95%.
1-Bromo-3,5-dimethoxybenzene is used as an intermediate in the synthetic preparation of pharmaceutical inhibitors via cross-coupling reactions.
1-Bromo-3,5-dimethoxybenzene can be synthesized by using 1,3-dimethoxybenzene via iridium-catalyzed arene borylation.
1-Bromo-3,5-dimethoxybenzene (1BDMB) is a synthetic molecule that can be used as an electron acceptor in organic photovoltaic cells. 1BDMB is a salt of the sodium salt of resorcylic acid and 1,3-dibromo-5,5-dimethoxybenzene. It has been shown to have a radical mechanism for the generation of free radicals. The radical mechanism is initiated by light absorption by the ruthenium complex at the center of the molecule which induces photoinduced electron transfer from the ruthenium to 1BDMB. This process results in electron transfer from the donor to an acceptor molecule, such as oxygen or nitrogen. The pharmacokinetic properties of this compound are not well known; however, it has been demonstrated that it can be synthesized through a cross-coupling reaction with other aromatic compounds such as stemofuran., 20469-65-2.

Referemce:
Bromide – Wikipedia,
bromide – Wiktionary